

Medium Access Control - II

by

Dr. Manas Khatua

Assistant Professor Dept. of CSE IIT Jodhpur E-mail: <u>manaskhatua@iitj.ac.in</u> Web: <u>http://home.iitj.ac.in/~manaskhatua</u> <u>http://manaskhatua.github.io/</u>

➢ Random Access MAC

- CSMA/CA

➤Controlled MAC

Channelization MAC– CDMA

Collision Avoidance (CA)

• Collision Detection is not useful in wireless networks

• Why??

- In wireless, send power (generally around 100mw) and receive sensitivity (commonly around 0.01 to 0.0001mw)
- The sending would cover up any possible chance of receiving a foreign signal, no chance of "Collision Detection"
- So, wireless transceivers can't send and receive on the same channel at the same time
- But, in wired networks (like Ethernet) the voltage is around 1 to 2.5v; sending and receiving are roughly same voltage
- Let, sending a 2.5v signal, and someone else collides with a 2.5v signal; so receive signal would be around 5v.
- So, Collision Avoidance was proposed

CSMA/CA

- Common features:
 - Channel sensing; Retransmission; Backoff
- Important modifications:
 - Inter-Frame Space (IFS): used instead of persistent method
 - Contention window (CW) and Binary exponential backoff (BEB) : time is treated in slots
 - Acknowledgement / Timeout : no collision detection
 - Basic / RTS-CTS mode of transmission
 - Use of Network Allocation Vector (NAV)

HT/ET Problem

A is an exposed terminal for B

RTS/CTS-based Approach

RTS: Request-to-send CTS: Clear-to-send ACK: Acknowledgement

NAV: how much time must pass before these stations are allowed to check the channel for idleness. DIFS: DCF Inter-frame Space = SIFS + 2*slot time SIFS: Short Inter-frame Space

Flowchart

Legend

 T_{B} : Backoff time

CTS: Clear to send

10-10-2017

Timing Diagram of DCF MAC

नयो विज्ञानमयोऽसि

Controlled Access

- Basic Idea: the stations consult one another before transmission
- Approaches:
 - Reservation

- Polling
- Token Passing

Polling

- Stations take turns in accessing the medium
- One station is designated as primary and others are secondary stations
- Select mode when primary sends data
- Polling when the primary wants to receive data

Token Passing

- All stations are logically connected in the form of ring
- Control of the access to the medium is performed using a token; a special bit pattern
- Token is circulated in round robin manner. Holder of token has the right to transmit

Channelization Approach

 Basic idea: the available bandwidth of a link is shared in time, frequency, or through code, among different stations.

- Protocols:
 - FDMA (frequency-division multiple access)
 - TDMA (time-division multiple access)
 - CDMA (code-division multiple access)

Basic Idea of CDMA

भागति सरमान्द्र भागति सरमान्द्र भागति सामयो विज्ञानमधोऽति ॥

- Let 4 stations: 1,2,3,4
- Their data frames: d₁, d₂, d₃, d₄
- Assigned codes: c₁, c₂, c₃, c₄

 Property-1: c_i . c_k => 0
 Property-2: c_i . c_i => 4 (number of station)
- Channel carrying:
 - $(d_1.c_1)+(d_2.c_2)+(d_3.c_3)+(d_4.c_4)$
- Let station 1 & 3 are talking,
- station1 wants data from station3
- Station1 do:

 $(d1.c1)+(d2.c2)+(d3.c3)+(d4.c4).c_3 = 4.d_3$

Chip Sequences & Operations

- Multiply by number: $2 \cdot [+1 + 1 1 1] = [+2 + 2 2 2]$
- Inner product: $[+1+1-1-1] \cdot [+1+1-1-1] = 1+1+1+1=4$

 $[+1 + 1 - 1 - 1] \bullet [+1 + 1 + 1 + 1] = 1 + 1 - 1 - 1 = 0$

• Addition: $[+1+1-1-1] + [+1+1+1] = [+2+2 \ 0 \ 0]$

- Encoding Rules:
 - 0 => -1; 1=> 1; silence => 0

Example

- wants to send:
 - Station1: 0; Station2: 0; Station3: silent; Station4: 1
- Encoded to: [-1, -1, 0, 1]
- Transmitted:

[-1.(+1 +1 +1 +1)] + [-1.(+1 -1 +1 -1)] + [0.(+1 +1 -1 -1)] + [+1 .(+1 -1 -1 +1)] = [-1 -1 -1 -1] + [-1 +1 -1 +1] + [0 0 0 0] + [+1 -1 -1 +1] = [-1 -1 -3 1]

- Let station4 wants to listen station2
 - Station4 do: [-1 -1 -3 +1].[+1 -1 +1 -1] = -4
 - Receive: $-4/4 = -1 \rightarrow \text{bit } 0$

Walsh Table

$$W_1 = \begin{bmatrix} +1 \end{bmatrix} W_{2N} = \begin{bmatrix} W_N & W_N \\ W_N & \overline{W_N} \end{bmatrix}$$

a. Two basic rules

b. Generation of W_2 and W_4

Thanks!

Figure and slide materials are taken from the following sources:

- 1. W. Stallings, (2010), Data and Computer Communications
- 2. NPTL lecture on Data Communication, by Prof. A. K. Pal, IIT Kharagpur
- 3. B. A. Forouzan, (2013), Data Communication and Networking