CS311: Data Communication

Medium Access Control - II

by

Dr. Manas Khatua

Assistant Professor Dept. of CSE IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Web: http://home.iitj.ac.in/~manaskhatua

http://manaskhatua.github.io/

Outline of the lecture

Random Access MAC

– CSMA [Kleinrock and Tobagi, 1975]

– CSMA/CA [Colvin 1983]

- MACA [Karn 1990]

– MACAW [Bharghavan et al. 1994]

Controlled MAC

- Channelization MAC
 - CDMA

Collision Avoidance (CA)

- Collision Detection is not useful in wireless networks.
- Why??
 - In wireless, send power (generally around 100mW) and receive sensitivity (commonly around 0.01 to 0.0001mW)
 - The sending would cover up any possible chance of receiving a foreign signal, no chance of "Collision Detection"
 - So, wireless transceivers can't send and receive on the same channel at the same time
 - But, in wired networks (like Ethernet) the voltage is around 1 to 2.5v;
 sending and receiving are roughly same voltage
 - Let, sending a 2.5v signal, and someone else collides with a 2.5v signal; so receive signal would be around 5v.
 - Further, the adapter not able to detect all collision due to signal obstruction and fading
- So, Collision Avoidance was proposed

MACA

- CSMA protocol frequently suffers from hidden terminal and exposed terminal problems
- In case of HT: lack of carrier doesn't always mean it's OK to transmit
- In case of ET: presence of carrier doesn't always mean that it's bad to transmit

Solution:

- Multiple Access with Collision Avoidance (MACA)
 - makes an announcement before sends the data frame
 - slotted media access control protocol
 - suitable for wireless networks
 - a node that hears RTS should remain silent to avoid conflict with CTS
 - a node that hears CTS should keep silent until the data transmission is complete

A is an exposed terminal for B

Limitation: MACA can't avoid collision completely.

MACAW

- MACA for Wireless (MACAW) extends the function of MACA
 - nodes send ACK after each successful transmission
 - It uses RTS-CTS-DS-DATA-ACK frame sequence for transferring data,
 - sometimes preceded by an RTS-RRTS frame sequence

CSMA/CA

- Common features:
 - Channel sensing; Retransmission; Backoff
- Important modifications:
 - Inter-Frame Space (IFS): used instead of persistent method
 - Contention window (CW) and Binary exponential backoff (BEB): time is treated in slots
 - Acknowledgement / Timeout : no collision detection
 - Basic / RTS-CTS mode of transmission
 - Use of Network Allocation Vector (NAV)

CSMA/CA with RTS/CTS

RTS: Request-to-send

CTS: Clear-to-send

ACK: Acknowledgement

NAV: how much time must pass before these stations are allowed to check the channel for idleness.

DIFS: DCF Inter-frame Space = SIFS + 2*slot time

SIFS: Short Inter-frame Space

Flowchart

Station has a frame to send

Legend

K: Number of attempts

 T_B : Backoff time

IFS: Interframe Space

RTS: Request to send

CTS: Clear to send

Timing Diagram of DCF MAC

Controlled Access

Basic Idea: the stations consult one another before transmission

- Approaches:
 - Reservation (e.g., R-ALOHA)

- Polling
- Token Passing

Polling

- Stations take turns in accessing the medium
- One station is designated as primary and others are secondary stations
- Select mode when primary sends data
- Polling when the primary wants to receive data

Token Passing

- All stations are logically connected in the form of ring
- Control of the access to the medium is performed using a token; a special bit pattern
- Token is circulated in round robin manner. Holder of token has the right to transmit

Channelization Approach

 Basic idea: the available bandwidth of a link is shared in time, frequency, or through code, among different stations.

Protocols:

- FDMA (frequency-division multiple access)
- TDMA (time-division multiple access)
- CDMA (code-division multiple access)

Basic Idea of CDMA

- Let 4 stations: 1,2,3,4
- Their data frames: d₁, d₂, d₃, d₄
- Assigned codes: c₁, c₂, c₃, c₄
 - Property-1: $c_i \cdot c_k => 0$
 - Property-2: $c_i \cdot c_i => 4$ (number of station)
- Channel carrying:

$$- (d_1.c_1)+(d_2.c_2)+(d_3.c_3)+(d_4.c_4)$$

- Let station 1 & 3 are talking,
- station1 wants data from station3
- Station1 do:

$$(d1.c1)+(d2.c2)+(d3.c3)+(d4.c4).c_3 = 4.d_3$$

Chip Sequences & Operations

$$C_1$$
 C_2 C_3 C_4 [+1 +1 +1] [+1 -1 +1 -1] [+1 +1 -1 -1] [+1 -1 -1]

- Multiply by number:
- $2 \bullet [+1 +1 -1 -1] = [+2 +2 -2 -2]$

Inner product:

$$[+1 +1 -1 -1] \bullet [+1 +1 -1 -1] = 1 + 1 + 1 + 1 = 4$$

$$[+1+1-1-1] \bullet [+1+1+1+1] = 1+1-1-1=0$$

• Addition: $[+1+1-1-1] + [+1+1+1+1] = [+2+2 \ 0 \ 0]$

Encoding Rules:

$$0 => -1;$$
 $1 => 1;$ silence $=> 0$

Example

- wants to send:
 - Station1: 0; Station2: 0; Station3: silent; Station4: 1
- Encoded to: [-1, -1, 0, 1]
- Transmitted:

$$[-1.(+1+1+1+1)] + [-1.(+1-1+1-1)] + [0.(+1+1-1-1)] + [+1.(+1-1-1+1)]$$

+ $[-1.(+1-1-1+1)]$
= $[-1-1-1-1] + [-1+1-1+1] + [0000] + [+1-1-1+1]$
= $[-1-1-3]$

Let station4 wants to listen station2

```
- Station4 do: [-1 -1 -3 +1].[+1 -1 +1 -1] = -4
```

- Receive: $-4/4 = -1 \rightarrow bit 0$

Walsh Table

$$w_1 = \begin{bmatrix} +1 \end{bmatrix} \quad w_{2N} = \begin{bmatrix} w_N & w_N \\ w_N & \overline{w_N} \end{bmatrix}$$

a. Two basic rules

b. Generation of W_2 and W_4

Thanks!

Figure and slide materials are taken from the following sources:

- 1. W. Stallings, (2010), Data and Computer Communications
- 2. NPTL lecture on Data Communication, by Prof. A. K. Pal, IIT Kharagpur
- 3. B. A. Forouzan, (2013), Data Communication and Networking