

IP, ICMP

Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: <u>manaskhatua@iitj.ac.in</u>

Internet's Network Layer

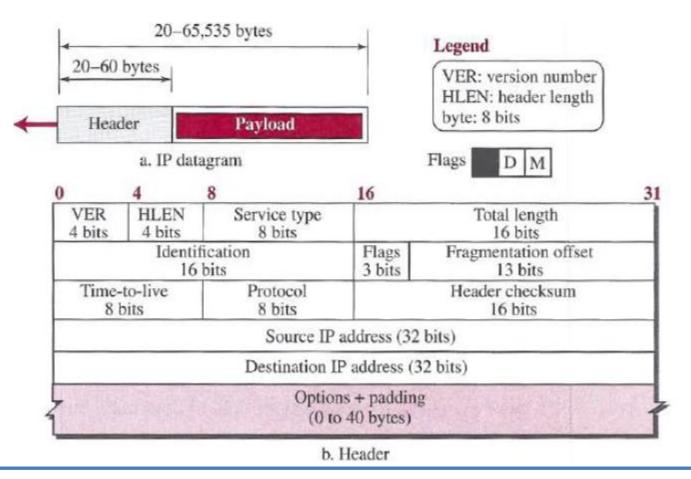
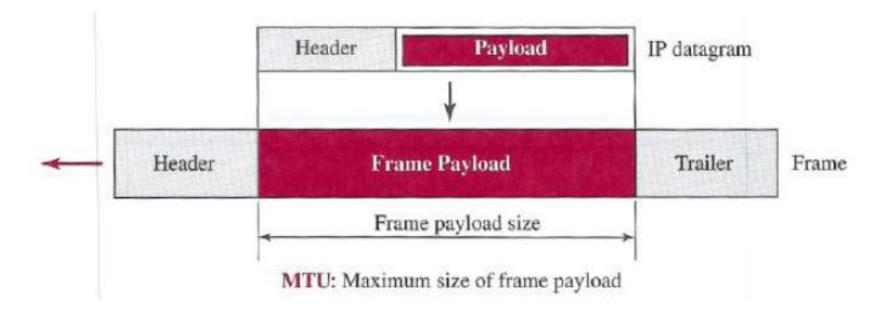


Figure 4.12 • A look inside the Internet's network layer

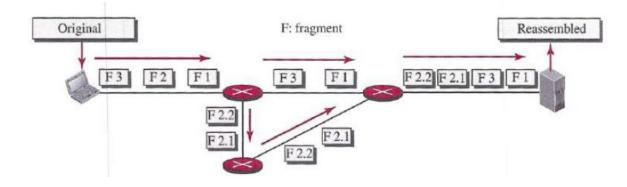
IP Header

• The most widely used protocol for internetworking is the Internet Protocol (IP).

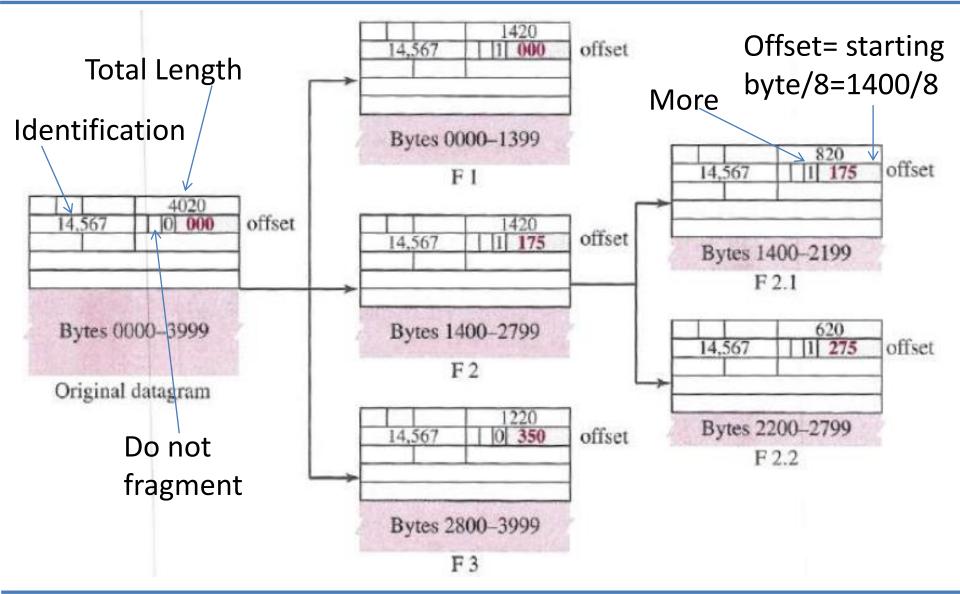
IP Datagram Fields



- VER: version of the IPv4 protocol
- HLEN: total length of the datagram header
- ToS: provides *differentiated services* (DiffServ)
- Total length: header plus data in byte
- Identification, Flags, Fragmentation Offset: These three fields are related to the fragmentation of the IP datagram
- TTL: control the maximum number of hops (routers) visited by the datagram
- Protocol: this field helps to define to which protocol the payload should be delivered
- Checksum: helps to check the error in datagram header
- Source & Destination Address: 32 bit IP addresses
- Options & Padding: used for network testing and debugging
- Payload: the packet coming from other protocols that use the service of IP

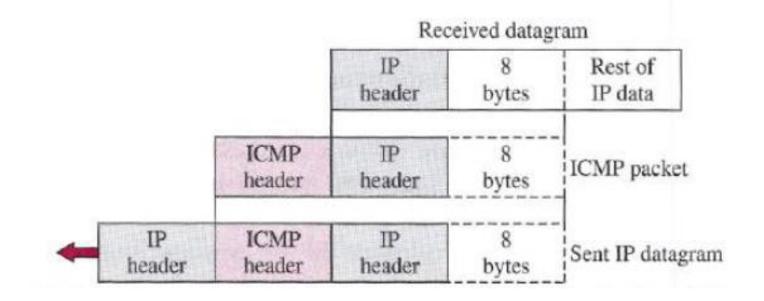

Fragmentation & Reassembly

- A datagram can travel through different networks.
- •
- Each router decapsulates the IP datagram from the frame it receives, processes it, and then encapsulates it in another frame.



- Fragmentation is done by the source host or intermediate router.
- But, Reassembly is done by the destination host only.
- **16-bit** *identification field*: identifies a datagram. This is the present value of a counter maintained by sender.
- 3-bit flags *field*:
 - Not used,
 - D: do not fragment,
 - M: more fragment
- **13-bit** *fragmentation offset field*: shows the relative position of a fragment w.r.t. the whole datagram

ICMP


- ICMP: Internet Control Message Protocol
- What happens
 - if something goes wrong?
 - if router discards a datagram?
 - if TTL finishes?
 - if fragmentation is not permitted?
- Need a mechanism for network management

- Its messages are not passed directly to the data-link layer as would be expected.
- Instead, the messages are first encapsulated inside IP datagrams before going to the lower layer.

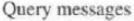
ICMP Messages

- ICMP Message size:
 - 8-byte header and
 - a variable-size data section

8 bits	8 bits	16 bits					
Туре	Code	Checksum					
	Rest of the header						
	Data se	ction					

Error-reporting messages

Type and code values


Error-reporting messages

- 03: Destination unreachable (codes 0 to 15)
- 04: Source quench (only code 0)
- 05: Redirection (codes 0 to 3)
- 11: Time exceeded (codes 0 and 1)
- 12: Parameter problem (codes 0 and 1)

08 and 00: Echo request and reply (only code 0) 13 and 14: Timestamp request and reply (only code 0)

	Data	section		
Identifier		Sequence numbe		
Туре	Code	Checksum		
8 bits	8 bits	16 bits		

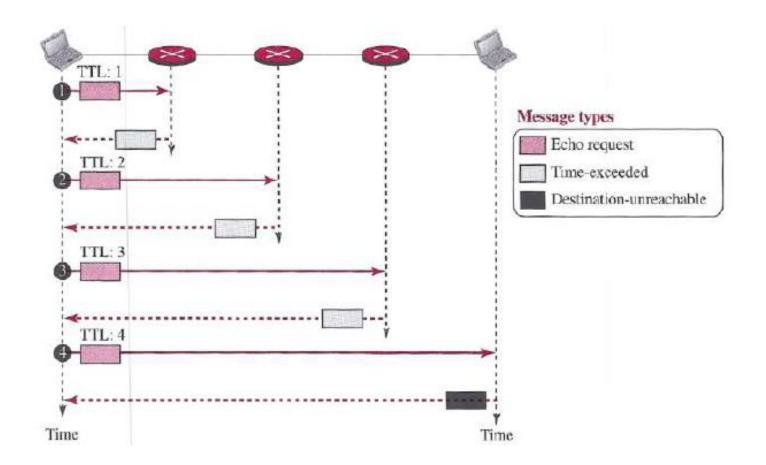
Error Reporting Messages

- Only error reporting; no error correction
- Messages are sent to original sources of the datagrams
- No error message for:
 - datagram carrying an ICMP error message
 - a fragmented datagram that is not the first fragment
 - a datagram having a multicast address
 - a datagram having a special address such as 127.0.0.0 or 0.0.0.0

- *Ping:* to find if a host is alive and responding
 - The source host sends ICMP echo-request messages;
 - the destination, if alive, responds with ICMP echo-reply messages.
 - It can calculate the round-trip time

\$ ping auniversity.edu		
PING auniversity.edu (152.181.8.3) 56 (84) bytes of data	ı.	
64 bytes from auniversity.edu (152.181.8.3): icmp_seq=0	ul=62	time=1.91 ms
64 bytes from auniversity.edu (152.181.8.3): icmp_seq=1	ttl=62	time=2.04 ms
64 bytes from auniversity.edu (152.181.8.3): icmp_seq=2	ttl=62	time=1.90 ms

- The traceroute program in UNIX or tracert in Windows can be used to trace the path of a packet from a source to the destination.
 - It can find the IP addresses of all the routers that are visited along the path
 - It takes help of ICMP error reporting messages


\$ traceroute printers.com

traceroute to printers.com (13.1.69.93), 30 hops max, 38-byte packets

1 route.front.edu	(153.18.31.254)	0.622 ms	0.891 ms	0.875 ms
2 ceneric.net	(137.164.32.140)	3.069 ms	2.875 ms	2.930 ms
3 satire.net	(132.16.132.20)	3.071 ms	2.876 ms	2.929 ms
4 alpha.printers.com	(13.1.69.93)	5.922 ms	5.048 ms	4.922 ms

• The *traceroute* application program is encapsulated in a UDP user datagram, but *traceroute* intentionally uses a port number that is not available at the destination.

Thanks!