
CS322: Database Systems

Dr. Manas Khatua

Assistant Professor

Dept. of CSE

IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Relational Database Design

mailto:manaskhatua@iitj.ac.in

Introduction

• Conceptual data model (e.g. ER Model) teaches
– entity types,
– relationship types, and
– their respective attributes

• Each relation schema consists of a number of attributes

• the relational database schema consists of a number of relation
schemas

• Common understanding from the previous:
– attributes are grouped to form a relation schema

• How to measure the quality / goodness of the design?

28-01-2018 Dr. Manas Khatua 2

Cont…

• two levels to understand the goodness of a relation
schema

– logical (or conceptual) level
• how users interpret the relation schemas and the meaning of their

attributes
• enables users to understand clearly the meaning of the data in the

relations

– implementation (or physical storage) level
• how the tuples in a base relation are stored and updated
• enables users for systematic storing, updating, and accessing the data

in the relations

28-01-2018 3Dr. Manas Khatua

Cont…

• database design is performed using two approaches:
– bottom-up (design by Synthesis)

• considers the basic relationships among individual attributes as the starting point
• it suffers from a large number of binary relationships among attributes as the

starting point.

– top-down (design by Analysis)
• starts with a number of groupings of attributes into relations that exist together

naturally
• The relations are then analyzed individually and collectively, leading to further

decomposition

• implicit goals of the design activity
– information preservation

• in terms of maintaining all concepts, including attribute types, entity types, and
relationship types as well as generalization/specialization relationships

– minimum redundancy
• minimizing redundant storage of the same information
• reducing the need for multiple updates to maintain consistency

28-01-2018 Dr. Manas Khatua 4

Redundant Information

• Suppose we combine instructor and department into inst_dept
relationship
inst_dept = (Instructor ID, name, salary, dept_name, building, budget)

• Result is possible repetition of information

28-01-2018 Dr. Manas Khatua 5

Informal Design Guidelines

• Four informal guidelines

– Making sure that the semantics of the attributes is clear in the schema
– Reducing the redundant information in tuples
– Reducing the NULL values in tuples
– Disallowing the possibility of generating spurious tuples

• A simplified COMPANY relational database schema

EMPLOYEE = {Ename, Ssn, Bdate, Address, Dnumber}
DEPARTMENT = {Dname, Dnumber, Dmgr_ssn}
DEPT_LOCATIONS = {Dnumber, Dlocation}
PROJECT = {Pname, Pnumber, Plocation, Dnum}
WORKS_ON = {Ssn, Pnumber, Hours}

*italic font represents F.K.

28-01-2018 6Dr. Manas Khatua

Cont…

• Let a database design as follows:

• All attributes:
{ Ename, Ssn, Bdate, Address, Dnumber, Dname, Dlocation, Dmgr_ssn, Pnumber, Pname,
Plocation, Hours }

• Database Schema

EMP_DEPT = {Ename, Ssn, Bdate, Address, Dnumber, Dname, Dlocation, Dmgr_ssn}

EMP_PROJ = {Ssn, Pnumber, Hours, Ename , Pname, Plocation}

• Observations:
• there is nothing wrong logically with these two relations
• They may be good as views

• But, they cause problems when used as base relations

28-01-2018 7Dr. Manas Khatua

Database Anomalies

• Insertion
Anomaly

• Deletion
Anomaly

• Modification
Anomaly

28-01-2018 Dr. Manas Khatua 8

Spurious Tuples

• Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations
instead of EMP_PROJ.

EMP_PROJ = {Ssn, Pnumber, Hours, Ename , Pname, Plocation}

EMP_LOCS = {Ename, Plocation}
EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

• Logically they are not incorrect. But, we cannot recover the information that
was originally in EMP_PROJ from EMP_PROJ1 and EMP_LOCS.

• After performing NATURAL JOIN operation, the generated additional tuples
that were not in EMP_PROJ are called spurious tuples

• So, avoid relations that contain matching attributes that are not (foreign key,
primary key) combinations because joining on such attributes may produce
spurious tuples.

28-01-2018 9Dr. Manas Khatua

Summary of Design Guidelines

1. Avoid redundant information which creates anomalies in tuple
insertion, deletion, and modification

2. Avoid NULL values which yields waste of storage space and
creates difficulty of performing selections, aggregation, and joins

3. Decompose a relation schema based upon the primary key,
foreign key relationship to avoid the generation of invalid and
spurious tuples

28-01-2018 10Dr. Manas Khatua

Functional Dependencies
• A functional dependency (FD) is a constraint between two sets of attributes from

the database.

• Let R be a relation schema
  R and   R

• The functional dependency   holds on R
if and only if for any legal relations r(R), whenever any two tuples t1 and t2 of r
agree on the attributes , they also agree on the attributes . That is,

t1[] = t2 []  t1[] = t2 []

• Example: Consider r(A,B) with the following instance of r.

• On this instance, A B does NOT hold, but B  A does hold.

• Hence, the main use of functional dependencies is to describe a relation schema R
by specifying constraints on its attributes that must hold at all times.

28-01-2018 Dr. Manas Khatua 11

1 4

1 5

3 7

Cont…
• K is a superkey for relation schema R if and only if

– K  R

• K is a candidate key for R if and only if
– K  R, and
– for no   K,  R

• One of the candidate keys is designated to be the primary key, and the others are
called secondary keys.

• Functional dependencies allow us to express constraints that cannot be expressed
using superkeys.

• Consider the schema:
inst_dept (ID, name, salary, dept_name, building, budget).

We expect these functional dependencies to hold:
dept_name building

and, ID  building
but would not expect the following to hold:

dept_name  salary

28-01-2018 Dr. Manas Khatua 12

Use of FD

• We use FDs to:
– test relations to see if they are legal under a given set of FDs.

• If a relation r is legal under a set F of FDs, we say that r satisfies F.

– specify constraints on the set of legal relations
• We say that F holds on R if all legal relations on R satisfy the set of

FDs F.

• Note:
– A specific instance of a relation schema may satisfy a FD

even if the FD does not hold on all legal instances.
– For example,
a specific instance of instructor may, by chance, satisfy

name  ID.

28-01-2018 Dr. Manas Khatua 13

Closure of a Set of FDs
• Given a set F of functional dependencies, there are certain other

functional dependencies that are logically implied by F.
– For example: If A B and B  C, then we can infer that A C

• The set of all functional dependencies logically implied by F is the closure
of F.

• We denote the closure of F by F+.
• F+ is a superset of F.

• F+ = {Ssn Ename, Bdate, Address, Dnumber
Dnumber Dname, Dmgr_ssn
Ssn  Dname, Dmgr_ssn

28-01-2018 Dr. Manas Khatua 14

Cont…

• We can find F+, the closure of F, by repeatedly applying
Armstrong’s Axioms:

– if   , then   (reflexivity)
– if  , then      (augmentation)
– if  , and  , then   (transitivity)

• These rules are
– sound (generate only functional dependencies that actually hold), and
– complete (generate all functional dependencies that hold).

• Additional rules:
– If   holds and   holds, then    holds (union)
– If    holds, then   holds and   holds (decomposition)
– If   holds and     holds, then    holds

(pseudotransitivity)
The above rules can be inferred from Armstrong’s axioms.

28-01-2018 Dr. Manas Khatua 15

Example (Closure of a Set of FDs)

• R = (A, B, C, G, H, I)

F = { A  B
A  C

CG  H
CG  I

B  H}

• some members of F+

– A  H
• by transitivity from A  B and B  H

– AG  I
• by augmenting A  C with G, to get AG  CG

and then transitivity with CG  I

– CG  HI
• by augmenting CG  I to infer CG  CGI,

and augmenting of CG  H to infer CGI  HI,
and then transitivity

28-01-2018 Dr. Manas Khatua 16

To test whether the decomposition

satisfies the dependency

preservation, we need to find the all

FDs functionally determined by the

given set of FDs.

Example (Closure of an Attribute Set)
• R = (A, B, C, G, H, I)

F = {A  B
A  C
CG  H
CG  I
B  H}

• (AG)+

1. result = AG
2. result = ABCG (A  C and A  B)
3. result = ABCGH (CG  H and CG  AGBC)
4. result = ABCGHI (CG  I and CG  AGBCH)

• Is AG a candidate key?

1. Is AG a super key?
1. Does AG  R? == Is (AG)+  R

2. Is any subset of AG a super key?
1. Does A R? == Is (A)+  R
2. Does G  R? == Is (G)+  R

28-01-2018 Dr. Manas Khatua 17

To test whether a set of attributes,

say (AG), is a superkey, we need to

find the set of attributes functionally

determined by (AG).

Canonical Cover
• Sets of FDs may have redundant dependencies that can be inferred from

the others

– For example: A  C is redundant in: {A B, B  C, A C}

– Parts of a functional dependency may be redundant
• E.g.: on RHS: {A  B, B C, A CD} can be simplified to

{A  B, B C, A D}

• E.g.: on LHS: {A  B, B C, AC  D} can be simplified to
{A  B, B C, A D}

• Intuitively, a canonical cover of F is a “minimal” set of FDs equivalent to F,
having no redundant dependencies or redundant parts of dependencies.

• What is the use of it?
To minimize the number of FDs that need to be tested in case of an update in
the relation, we may restrict F to a canonical cover Fc.

28-01-2018 Dr. Manas Khatua 18

Extraneous Attributes
• Consider a set F of FDs and the FD   in F.

– Attribute A is extraneous in  if A  
and F logically implies (F – { })  {( – A) }.

– Attribute A is extraneous in  if A  
and the set of functional dependencies
(F – { })  {( – A)} logically implies F.

• Note: implication in the opposite direction is trivial in each of the cases
above, since a “stronger” functional dependency always implies a weaker
one

• Example: Given F = {A C, AB C }
– B is extraneous in AB C because {A C, AB C} logically implies A  C (I.e.

the result of dropping B from AB C).

• Example: Given F = {AB C, AB CD}
– C is extraneous in AB CD since AB  C can be inferred even after deleting C

28-01-2018 Dr. Manas Khatua 19

Testing if an Attribute is Extraneous

• Consider a set F of functional dependencies and the functional
dependency   in F.

• To test if attribute A   is extraneous in 
1. compute ({} – A)+ using the dependencies in F
2. check that ({} – A)+ contains ; if it does, A is extraneous in 

• To test if attribute A   is extraneous in 
1. compute + using only the dependencies in

F’ = (F – { })  {( – A)},
2. check that + contains A; if it does, A is extraneous in 

28-01-2018 Dr. Manas Khatua 20

Canonical Cover
• A canonical cover for F is a set of dependencies Fc such that

– F logically implies all dependencies in Fc, and
– Fc logically implies all dependencies in F, and
– No functional dependency in Fc contains an extraneous attribute, and
– Each left side of functional dependency in Fc is unique.

• To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
1  1 and 1 2 with 1 1 2

Find a functional dependency   with an
extraneous attribute either in  or in 

/* Note: test for extraneous attributes done using Fc, not F*/
If an extraneous attribute is found, delete it from  

until F does not change

• Note: Union rule may become applicable after some extraneous
attributes have been deleted, so it has to be re-applied

28-01-2018 Dr. Manas Khatua 21

Example (Canonical Cover)
• R = (A, B, C)

F = {A  BC
B  C
A  B

AB  C}

• Combine A  BC and A  B into A  BC

– Set is now {A  BC, B  C, AB  C}

• A is extraneous in AB  C

– Check if the result of deleting A from AB  C is implied by the other dependencies

• Yes: in fact, B  C is already present!

– Set is now {A  BC, B  C}

• C is extraneous in A BC

– Check if A  C is logically implied by A  B and the other dependencies

• Yes: using transitivity on A  B and B  C.

– Can use attribute closure of A in more complex cases

• The canonical cover is: A  B
B  C

28-01-2018 Dr. Manas Khatua 22

28-01-2018 23Dr. Manas Khatua

