
CS322: Database Systems

Dr. Manas Khatua
Assistant Professor

Dept. of CSE
IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Concurrency Control:
Lock-Based Protocol

mailto:manaskhatua@iitj.ac.in

Concurrency Control

• The fundamental properties of a transaction is isolation.

• When several transactions execute concurrently in the database, however,
the isolation property may no longer be preserved.

• The system must control the interaction among the concurrent transactions
to ensure the isolation.

• This control is achieved through one of a variety of mechanisms called
concurrency control schemes.

• Using concurrency control protocols (sets of rules) the serializability is
ensured.

• There are a variety of concurrency-control techniques
– Lock-Based Protocols
– Timestamp-Based Protocols
– Validation-Based Protocols

• No one scheme is clearly the best; each one has advantages.

13-04-2018 2Dr. Manas Khatua

Lock-Based Protocol

13-04-2018 Dr. Manas Khatua 3

Lock-Based Protocols

• What is Lock?
– A lock is a variable associated with a data item

– It describes the status of the item w.r.t. possible operations that can
be applied to it.

– A lock is a mechanism

– It controls concurrent access to a data item

• A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks.

• Several types of locks are used in concurrency control.
– Binary lock

– Shared/exclusive lock (or, read/write lock)

13-04-2018 4Dr. Manas Khatua

Binary Lock

• A binary lock can have two states or values:
• locked and unlocked (or 1 and 0, for simplicity).

• A distinct lock is associated with each database item X.

• If the value of the lock on X is 1, item X cannot be accessed by
a database operation that requests the item.

• If the value of the lock on X is 0, the item can be accessed
when requested, and the lock value is changed to 1.

13-04-2018 Dr. Manas Khatua 5

Lock & Unlock operations in Binary lock

• lock_item(X):
B: if LOCK(X) = 0 (* item is unlocked *)

then LOCK(X) ←1 (* lock the item *)
else

begin
wait (until LOCK(X) = 0

and the lock manager wakes up the transaction);
go to B

end;

• unlock_item(X):
LOCK(X) ← 0; (* unlock the item *)
if any transactions are waiting

then wakeup one of the waiting transactions;

• Hence, a binary lock enforces mutual exclusion on the data item

13-04-2018 Dr. Manas Khatua 6

Binary Lock (Cont…)
• It is quite simple to implement a binary lock

• each lock can be a record with three fields:
– <Data_item_name, LOCK_variable, Locking_transaction>
– plus a queue for transactions that are waiting to access the item.

• The system needs to maintain only these records for the items that are currently
locked in a lock table, which could be organized as a hash file on the item name

• The DBMS has a lock manager subsystem to keep track of and control access to
locks.

• In binary locking, every transaction must obey the following rules

1) A transaction T must issue the operation lock_item(X) before any read_item(X) or
write_item(X) operations are performed in T.

2) A transaction T must issue the operation unlock_item(X) after all read_item(X) and
write_item(X) operations are completed in T.

3) A transaction T will not issue a lock_item(X) operation if it already holds the lock on item X.
4) A transaction T will not issue an unlock_item(X) operation unless it already holds the lock on

item X.

13-04-2018 Dr. Manas Khatua 7

Shared/Exclusive Lock
• Binary locking scheme is too restrictive for database items because at most one

transaction can hold a lock on a given item

• We should allow several transactions to access the same item X if they all access X
for reading purposes only.
– Solution: multiple-mode lock (e.g., shared/exclusive lock)

• Data items can be locked in two modes in shared/exclusive lock:
– exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using

lock-X instruction.

– shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction.

• there are three operations:
– read_lock(X) OR, lock-S(X) : shared mode
– write_lock(X) OR, lock-X(X) : exclusive mode
– unlock(X)

• Lock requests are made to the concurrency-control manager by the programmer.
• Transaction can proceed only after request is granted.

13-04-2018 Dr. Manas Khatua 8

Cont…

13-04-2018 Dr. Manas Khatua 9

• Rules for the shared/exclusive locking scheme

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any read_item(X)
operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any write_item(X) operation is
performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and write_item(X)
operations are completed in T.

4. A transaction T will not issue a read_lock(X) operation if other transaction already holds a write
(exclusive) lock on item X.

5. A transaction T will not issue a write_lock(X) operation if other transaction already holds a read
(shared) lock or write (exclusive) lock on item X.

6. A transaction T will not issue an unlock(X) operation unless it already holds a read (shared) lock
or a write (exclusive) lock on item X.

• Lock-compatibility matrix
At any time, several shared-mode locks
can be held simultaneously (by
different transactions) on a particular
data item.
All other combinations are not allowed.

Cont…

13-04-2018 Dr. Manas Khatua 10

• Each record in the lock table will have four fields:
– <Data_item_name, LOCK_variable, No_of_reads, Locking_transaction(s)>

• Example of a transaction performing locking:

Shortcomings of Read-Write lock

13-04-2018 Dr. Manas Khatua 11

• Locking as above is not
sufficient to guarantee
conflict serializability —
if A and B get updated
in-between the read of A
and B, the displayed sum
would be wrong.

• The schedule shows an
inconsistent state.

• The reason for this
mistake is that the
transaction T1 unlocked
data item B too early, as
a result of which T2 saw
an inconsistent state.

Naïve Solution

• unlocking is delayed to the end of the transaction

13-04-2018 Dr. Manas Khatua 12

• Delayed unlocking can lead to an undesirable
situation (e.g., deadlock)

• We have arrived at a state where neither of these
transactions can ever proceed with its normal
execution.

• This situation is called deadlock.

Deadlock and Starvation

• If we do not use locking, or if we unlock data items too soon after
reading or writing them, we may get inconsistent states.

• On the other hand, if we do not unlock a data item before
requesting a lock on another data item, deadlocks may occur.

• It is possible that there is a sequence of transactions that each
requests a lock-S() on the data item, and each transaction releases
the lock a short while after it is granted.

• In between, if any transaction requests for lock-X() but never gets
the exclusive-mode lock on the data item, then the transaction may
never make progress, and is said to be starved.

• Example: T1 (read A), T’(write A), T2(read A) ….., Tn(read A)

13-04-2018 Dr. Manas Khatua 13

Lock Conversions

• A transaction that already holds a lock on item X is allowed under certain
conditions to convert the lock from one locked state to another.

• Type of Conversion:

– Upgrade

– Downgrade

• For example, it is possible for a transaction T to issue a lock-S(A) and then
later to upgrade the lock by issuing a lock-X(A) operation

• It is also possible for a transaction T to issue a lock-X(A) and then later to
downgrade the lock by issuing a lock-S(A) operation.

13-04-2018 Dr. Manas Khatua 14

Obtain Conflict-Serializable Schedule

13-04-2018 Dr. Manas Khatua 15

Two-Phase Locking Protocol

• Two-Phase Locking protocol ensures conflict-serializable schedules.

• A transaction is said to follow the two-phase locking protocol if all locking operations
(lock-S, lock-X) precede the first unlock operation in the transaction

• It can be divided into two phases:
– Phase 1: Growing Phase

• Transaction may obtain locks
• Transaction may not release locks

– Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

• Initially, a transaction is in the growing phase.

• The protocol assures serializability.

• It can be proved that the transactions can be serialized in the order of their lock points
(i.e., the point where a transaction acquired its final lock).

13-04-2018 16Dr. Manas Khatua

Cont…

Shrinking Phase

13-04-2018 Dr. Manas Khatua 17

• Transactions T1 and T2 are
not two-phase

• Transactions T3 and T4 are
two-phase

Growing Phase

Cont…

• Another Example:
– If we enforce two-phase locking, the transactions (T1 and T2) can be

rewritten as T1’ and T2’

13-04-2018 Dr. Manas Khatua 18

Cont…

• because T1’ will issue its write_lock(X) before it unlocks item Y;
consequently, when T2’ issues its read_lock(X), it is forced to wait
until T1’ releases the lock by issuing an unlock (X) in the schedule.

13-04-2018 Dr. Manas Khatua 19

Equivalent
Concurrent
Schedule
which is
Inconsistent

Conflict-Serializable Schedule
• Lock point: The point in the schedule where the transaction has obtained

its final lock (the end of its growing phase) is called the lock point of the
transaction.

• Transactions can be ordered according to their lock points.
• This ordering is a serializability ordering for the transactions.

13-04-2018 Dr. Manas Khatua 20

Shortcomings of Two-Phase Locking

• does not ensure freedom
from deadlock

13-04-2018 Dr. Manas Khatua 21

• Cascading rollback may occur
under two-phase locking

• failure of T5 after the read(A) step of T7
leads to cascading rollback of T6 and T7

Variations of Two-phase Locking

• Strict two-phase locking:
– Cascading rollbacks can be avoided by this version
– This protocol requires

• not only that locking be two phase,
• but also that all exclusive-mode locks taken by a transaction be held until that

transaction commits.

• Rigorous two-phase locking:
– transactions can be serialized in the order in which they commit
– Cascading rollbacks can be avoided
– This protocol requires that

• all locks be held until the transaction commits.

13-04-2018 Dr. Manas Khatua 22

Lock Conversion in Two-phase Locking

• If lock conversion is allowed, then

– upgrading of locks (from lock-S to lock-X) must be done in the growing
phase,

– downgrading of locks (from lock-X to lock-S) must be done in the shrinking
phase

13-04-2018 Dr. Manas Khatua 23

• If we employ the two-phase
locking protocol, then T8 must
lock a1 in exclusive mode.

• However, if T8 could initially lock
a1 in shared mode, and then
could later change the lock to
exclusive mode, we could get
more concurrency,

Cont…

• Transactions T8 and T9 can run concurrently under the refined two-phase
locking protocol, as shown in the incomplete schedule of Figure 15.9.

13-04-2018 Dr. Manas Khatua 24

Lock Generation Method

• A simple but widely used scheme automatically generates
the appropriate lock and unlock instructions for a transaction

– When a transaction Ti issues a read(Q) operation, the system
issues a lock-S(Q) instruction followed by the read(Q) instruction.

– When Ti issues a write(Q) operation, the system checks to see
whether Ti already holds a lock-X(Q).

• If it does, then the system issues an upgrade(Q) instruction, followed by
the write(Q) instruction.

• Otherwise, the system issues a lock-X(Q) instruction, followed by the
write(Q) instruction.

– All locks obtained by a transaction are unlocked after that
transaction commits or aborts.

13-04-2018 Dr. Manas Khatua 25

Summary (of Two-Phase Locking)
• Two-phase locking (with lock conversion) generates conflict-serializable

schedules, and transactions can be serialized by their lock points.

• if exclusive locks are held until the end of the transaction, the schedules are
cascadeless.

• Strict two-phase locking and rigorous two-phase locking (with lock
conversions) are used extensively in commercial database systems.

• Note: for a set of transactions, there may be conflict-serializable schedules
that cannot be obtained through the two-phase locking protocol.

• to obtain conflict-serializable schedules through non-two-phase locking
protocols, we need
– either to have additional information about the transactions
– or to impose some structure or ordering on the set of data items in the database.

13-04-2018 26Dr. Manas Khatua

Graph-Based Protocol
• If we wish to develop protocols that are not two phase, we need additional

information on how each transaction will access the database.

• There are various models that can give us the additional information
• The simplest model requires that we have prior knowledge about the order

in which the database items will be accessed.

• Example of prior knowledge: partial ordering
– Let, a partial ordering → on the set D = {d1, d2, . . . , dn} of n data items.
– If di→ dj, then any transaction accessing both di and dj must access di before dj.
– partial ordering implies that the set D may now be viewed as a directed acyclic

graph, called a database graph

• simple protocol using partial ordering: tree protocol or tree-locking protocol
– restricted to employ only exclusive locks (lock-X)
– Each transaction Ti can lock a data item at most once
– Follow partial ordering
– Data items may be unlocked at any time.
– unlocked item cannot subsequently be relocked by same transaction .

13-04-2018 Dr. Manas Khatua 27

Cont…

• Let four transactions follow the tree
protocol on this graph.

• T10: lock-X(B); lock-X(E); lock-X(D);
unlock(B); unlock(E); lock-X(G); unlock(D);
unlock(G).

• T11: lock-X(D); lock-X(H); unlock(D);
unlock(H).

• T12: lock-X(B); lock-X(E); unlock(E);
unlock(B).

• T13: lock-X(D); lock-X(H); unlock(D);
unlock(H).

• What is conflict-serializable schedule
corresponding to the above transactions?

13-04-2018 Dr. Manas Khatua 28

Cont…

13-04-2018 Dr. Manas Khatua 29

• The tree protocol ensures
conflict serializable, and
freedom from deadlock

• The tree protocol does not
ensure recoverability and
cascadelessness.

• To ensure recoverability and
cascadelessness:
– do not release the exclusive

locks until the end of the
transaction

– This approach reduces
concurrency

– Alternative approach: commit
dependency

Commit Dependency

• Whenever a transaction Ti performs a read of an
uncommitted data item, we record a commit dependency of
Ti on the transaction that performed the last write to the
data item.

• Transaction Ti is then not permitted to commit until the
commit of all transactions on which it has a commit
dependency

• If any of these transactions aborts, Ti must also be aborted.

• It improves concurrency than delayed unlock (i.e. at the end
of transaction)

• But, it ensures only recoverability but not cascadelessness

13-04-2018 Dr. Manas Khatua 30

Two-phase v/s Tree Locking Protocol

• Advantages of tree-locking over two-phase locking
– It is deadlock-free,
– so no rollbacks are required.

– Unlocking may occur earlier,
– which may lead to shorter waiting times, and to an increase in

concurrency.

• Disadvantages of tree-locking compared to two-phase locking
– A transaction may have to lock data items that it does not access

• Example, a transaction that needs to access data items A and J in the database
graph (Fig. 15.11) must lock not only A and J, but also data items B, D, and H.

– So, increased locking overhead, the possibility of additional waiting
time, and a potential decrease in concurrency.

– Without prior knowledge of what data items will need to be locked,
transactions will have to lock the root of the tree !
• can reduce concurrency greatly

13-04-2018 Dr. Manas Khatua 31

Handling Deadlock and Starvation

13-04-2018 Dr. Manas Khatua 32

Deadlock Handling

• What is deadlock?
– A system is in a deadlock state if there exists a set of transactions such

that every transaction in the set is waiting for another transaction in
the set.

• Remedy to deadlock:
– rolling back some of the transactions involved in the deadlock
– Rollback of a transaction may be partial i.e. rolled back to the point

where it obtained a lock whose release resolves the deadlock.

• Two principal methods for dealing with the deadlock
– deadlock prevention

• it ensure that the system will never enter a deadlock state

– deadlock detection and recovery
• allow the system to enter a deadlock state, and then try to detect and recover

13-04-2018 Dr. Manas Khatua 33

Deadlock Prevention

• Two approaches to deadlock prevention
1) ensures that no cyclic waits can occur by ordering the requests for

locks, or requiring all locks to be acquired together.

Scheme 1:
• each transaction locks all its data items before it begins execution;
• either all are locked in one step or none are locked
Disadvantages:
• it is often hard to predict, before the transaction begins, what data items need

to be locked;
• data-item utilization may be very low, since many of the data items may be

locked but unused for a long time

Scheme 2:
• impose an ordering of all data items;
• transaction lock data items only in a sequence consistent with the ordering
Disadvantages:
• it is often hard to predict, before the transaction begins, what ordering is

needed

13-04-2018 Dr. Manas Khatua 34

Cont…
2) performs transaction rollback, instead of waiting for a lock, whenever

the wait could potentially result in a deadlock.
• use preemption and transaction rollbacks

• In preemption, when a transaction Tj requests a lock that Ti holds, the lock
granted to Ti may be preempted by rolling back of Ti , and granting of the
lock to Tj .

• To control the preemption, we assign a unique timestamp to each
transaction when it begins. The system uses these timestamps only to
decide whether a transaction should wait or roll back.

• Two deadlock-prevention schemes using timestamps:
– Scheme 1: wait–die scheme is a nonpreemptive technique

• When transaction Ti requests a data item currently held by Tj , Ti is allowed to wait only if it
has a timestamp smaller than that of Tj (that is, Ti is older than Tj). Otherwise, Ti is rolled
back (dies).

– Scheme 2: wound–wait scheme is a preemptive technique:
• When transaction Ti requests a data item currently held by Tj , Ti is allowed to wait only if it

has a timestamp larger than that of Tj (that is, Ti is younger than Tj). Otherwise, Tj is rolled
back (Tj is wounded by Ti).

– Disadvantages of Scheme 1 & 2: unnecessary rollbacks may occur.

13-04-2018 Dr. Manas Khatua 35

Deadlock Detection

• Deadlocks can be described
precisely in terms of a directed
graph called a wait-for graph

• The set of vertices consists of all
the transactions in the system

• Each edges is an ordered pair Ti
→ Tj.

• Ti → Tj implies that transaction Ti
is waiting for transaction Tj to
release a data item that it needs

• An edge is inserted and removed
dynamically when a request for
an item comes from a
transaction

13-04-2018 Dr. Manas Khatua 36

A deadlock exists in the system
if and only if the wait-for graph
contains a cycle.

Deadlock Recovery

• When a detection algorithm determines that a deadlock
exists, the system must recover from the deadlock

• common solution is to roll back one or more transactions to
break the deadlock

• Three actions need to be taken:
– Selection of a victim: determine which transaction (or

transactions) to roll back to break the deadlock

– Rollback: Once we have decided that particular transaction, we
must determine how far this transaction should be rolled back.
(either do total rollback or partial rollback)

– Starvation: it may happen that the same transaction is always
picked as a victim. We should have a maximum number of

13-04-2018 Dr. Manas Khatua 37

Starvation Handling

• In lock-based protocol, we can avoid starvation of
transactions by granting locks in the following manner:

– When a transaction Ti requests a lock on a data item Q in a
particular mode M (either shared or exclusive), the concurrency-
control manager grants the lock provided that:

1) There is no other transaction holding a lock on Q in a mode
that conflicts with M.

2) There is no other transaction that is waiting for a lock on Q
and that made its lock request before Ti .

13-04-2018 Dr. Manas Khatua 38

13-04-2018 39Dr. Manas Khatua

