CS322: Database Systems

Concurrency Control:
Lock-Based Protocol

Dr. Manas Khatua
Assistant Professor
Dept. of CSE
IIT Jodhpur
E-mail: manaskhatua@iitj.ac.in

mailto:manaskhatua@iitj.ac.in

Concurrency Control

The fundamental properties of a transaction is isolation.

When several transactions execute concurrently in the database, however,
the isolation property may no longer be preserved.

The system must control the interaction among the concurrent transactions
to ensure the isolation.

This control is achieved through one of a variety of mechanisms called
concurrency control schemes.

Using concurrency control protocols (sets of rules) the serializability is
ensured.

There are a variety of concurrency-control techniques
— Lock-Based Protocols
— Timestamp-Based Protocols
— Validation-Based Protocols

No one scheme is clearly the best; each one has advantages.

13-04-2018 Dr. Manas Khatua 2

Lock-Based Protocol

13-04-2018 Dr. Manas Khatua 3

Lock-Based Protocols

e Whatis Lock?

— A lock is a variable associated with a data item

— It describes the status of the item w.r.t. possible operations that can
be applied to it.

— Alock is a mechanism
— It controls concurrent access to a data item

* A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks.

» Several types of locks are used in concurrency control.
— Binary lock
— Shared/exclusive lock (or, read/write lock)

13-04-2018 Dr. Manas Khatua 4

Binary Lock

A binary lock can have two states or values:
* locked and unlocked (or 1 and O, for simplicity).

A distinct lock is associated with each database item X.

If the value of the lock on Xis 1, item X cannot be accessed by
a database operation that requests the item.

If the value of the lock on X'is O, the item can be accessed
when requested, and the lock value is changed to 1.

13-04-2018 Dr. Manas Khatua

Lock & Unlock operations in Binary lock

* lock_item(X):

B: if LOCK(X)=0 (* item is unlocked *)
then LOCK(X) €1 (* lock the item *)
else
begin

wait (until LOCK(X) =0
and the lock manager wakes up the transaction);
gotoB
end;

* unlock_item(X):
LOCK(X) < 0O; (* unlock the item *)
if any transactions are waiting
then wakeup one of the waiting transactions;

* Hence, a binary lock enforces mutual exclusion on the data item

13-04-2018 Dr. Manas Khatua 6

Binary Lock (Cont...)

Il & s Remsiy i

* Itis quite simple to implement a binary lock

e each lock can be a record with three fields:
— <Data_item_name, LOCK variable, Locking_transaction>
— plus a queue for transactions that are waiting to access the item.

* The system needs to maintain only these records for the items that are currently
locked in a lock table, which could be organized as a hash file on the item name

« The DBMS has a lock manager subsystem to keep track of and control access to
locks.

* In binary locking, every transaction must obey the following rules

1) A transaction T must issue the operation lock_item(X) before any read_item(X) or
write_item(X) operations are performed in T.

2) A transaction T must issue the operation unlock _item(X) after all read_item(X) and
write_item(X) operations are completed in T.

3) A transaction T will not issue a lock_item(X) operation if it already holds the lock on item X.

4) A transaction T will not issue an unlock_item(X) operation unless it already holds the lock on
item X.

13-04-2018 Dr. Manas Khatua 7

Shared/Exclusive Lock

Il @ s Remsiy i

* Binary locking scheme is too restrictive for database items because at most one
transaction can hold a lock on a given item

 We should allow several transactions to access the same item X if they all access X
for reading purposes only.

— Solution: multiple-mode lock (e.g., shared/exclusive lock)

* Data items can be locked in two modes in shared/exclusive lock:

— exclusive (X) mode. Data item can be both read as well as written. X-lock is requested using
lock-X instruction.

— shared (S) mode. Data item can only be read. S-lock is requested using lock-S instruction.

* there are three operations:
— read_lock(X) OR, lock-S(X) : shared mode
— write_lock(X) OR, lock-X(X) : exclusive mode
— unlock(X)

e Lock requests are made to the concurrency-control manager by the programmer.
* Transaction can proceed only after request is granted.

13-04-2018 Dr. Manas Khatua 8

Cont...

I & s R i
* Rules for the shared/exclusive locking scheme

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any read_item(X)
operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any write_item(X) operation is
performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and write_item(X)
operations are completed in T.

4. A transaction T will not issue a read_lock(X) operation if other transaction already holds a write
(exclusive) lock on item X.

5. A transaction T will not issue a write_lock(X) operation if other transaction already holds a read
(shared) lock or write (exclusive) lock on item X.

6. A transaction T will not issue an unlock(X) operation unless it already holds a read (shared) lock

or a write (exclusive) lock on item X.

* Lock-compatibility matrix

S X At any time, several shared-mode locks
can be held simultaneously (by
true | false different transactions) on a particular
X | false | false data item. o
All other combinations are not allowed.

13-04-2018 Dr. Manas Khatua 9

Cont...

* Eachrecord in the lock table will have four fields:
— <Data_item_name, LOCK variable, No_of_reads, Locking_transaction(s)>

* Example of a transaction performing locking:

T1: lock-X(B);

read(B); Tr: lock-S(A);

B = B —50; read(A);

write(B); unlock(A);
unlock(B); lock-S(B);
lock-X(A); read(B);

read(A); unlock(B);

A=A +50; display(A + B).
write(A);

unlock(A). Figure 15.3 Transaction T5.

Figure 15.2 Transaction T;.

13-04-2018 Dr. Manas Khatua 10

Shortcomings of Read-Write lock

Il @ s Remsiy i
T ib) concurreny-control manager
Locking as above is not
sufficient to guarantee lock-X(B)
: o o . grant-X(B, T7)
conflict serializability — read(B)
if A and B get updated _
X B:=B —50
in-between the read of A write(B)
and B, the displayed sum unlock(B)
would be wrong. lock-S(A)
grant-S(A, 1)
The schedule shows an read(A)
inconsistent state. unlock(A)
lock-S(B)
. t-S(B, T
The reason for this read(B) grant=s(b, 12
mistake is that the unlock(B)
transaction 71 unlocked display(A + B)
data item B too early, as lock-X(A)
a result of which T2 saw grant-X(A, Th)
an inconsistent state. read(A) ’
A=A—-50
write(A)
unlock(A)

Figure 15.4 Schedule 1.

13-04-2018 Dr. Manas Khatua 11

Naive Solution

JEY

unlocking is delayed to the end of the transaction

lock-X(B);

read(B); Ty: lock-S(A);

B :=B — 50; read(A);
write(B); lock-S(B);
lock-X(A); read(B);
read(A); display(A + B);
A=A +50; unlock(A);
write(A); unlock(B).
unlock(B);

unlock(A).

Delayed unlocking can lead to an undesirable
situation (e.g., deadlock)

We have arrived at a state where neither of these
transactions can ever proceed with its normal
execution.

This situation is called deadlock.

I3 Iy

lock-X(B)

read(B)

B:=B — 50

write(B)
lock-S(A)
read(A)
lock-S(B)

lock-X(A)

Figure 15.7 Schedule 2.

13-04-2018 Dr. Manas Khatua

12

Deadlock and Starvation

* If we do not use locking, or if we unlock data items too soon after
reading or writing them, we may get inconsistent states.

e Onthe other hand, if we do not unlock a data item before
requesting a lock on another data item, deadlocks may occur.

* |tis possible that there is a sequence of transactions that each
requests a lock-S() on the data item, and each transaction releases
the lock a short while after it is granted.

* In between, if any transaction requests for lock-X() but never gets
the exclusive-mode lock on the data item, then the transaction may
never make progress, and is said to be starved.

 Example: T1 (read A), T'(write A), T2(read A), Tn(read A)

13-04-2018 Dr. Manas Khatua 13

Lock Conversions

* A transaction that already holds a lock on item X is allowed under certain
conditions to convert the lock from one locked state to another.

* Type of Conversion:
— Upgrade
— Downgrade

* For example, it is possible for a transaction T to issue a lock-S(A) and then
later to upgrade the lock by issuing a lock-X(A) operation

* |tis also possible for a transaction T to issue a lock-X(A) and then later to
downgrade the lock by issuing a lock-S(A) operation.

13-04-2018 Dr. Manas Khatua 14

Obtain Conflict-Serializable Schedule

13-04-2018 Dr. Manas Khatua 15

Two-Phase Locking Protocol

Il @ s Remsiy i

 Two-Phase Locking protocol ensures conflict-serializable schedules.

* Atransaction is said to follow the two-phase locking protocol if all locking operations
(lock-S, lock-X) precede the first unlock operation in the transaction

* |t can be divided into two phases:

— Phase 1: Growing Phase
* Transaction may obtain locks
* Transaction may not release locks

— Phase 2: Shrinking Phase
* Transaction may release locks
* Transaction may not obtain locks

e |Initially, a transaction is in the growing phase.

 The protocol assures serializability.

* It can be proved that the transactions can be serialized in the order of their lock points
(i.e., the point where a transaction acquired its final lock).

13-04-2018 Dr. Manas Khatua 16

Cont...

T1: lock-X(B);

read(B); I>: lock-S(A);
B:=B —50; read(A); « Transactions T1 and T2 are
write(B): [Uﬂ|00k(ﬂ);] not two-phase
[unIock(B);] |OCZ'(§()B):
lock-X(A); rea ; . :
read(A();) unlock(B); :’\;?g_saﬁ;cgc;ns T3 and T4 are
A=A +50; display(A + B). P
write(A);
unlock(A).
—13: lock-X(B);
read(B); Ty lock-S(A);
Growing Phase - Wte(B); lock-S(B);
|OC|‘('X(A), I’ead(B);
read(A); display(A + B);
A=A +50; [unlock(A);]
- write(A); unlock(B).
Shrinking Phase [U”'OCk(B)F]
unlock(A).

13-04-2018 Dr. Manas Khatua 17

Cont...

* Another Example:

— If we enforce two-phase locking, the transactions (T, and T,) can be
rewrittenas T,” and T,’

Ty

T,

read_lock(Y):
read_item(Y);
unlock(Y);
write_lock(X):
read_item(X):
X=X+Y
write_item(X):
unlock(X):

read_lock(X):
read_item(X);
unlock(X);
write_lock(Y):
read_item(Y):
Y=X+Y:
write_item(Y):
unlock(Y):

T,

T,

read_lock(Y):
read_item(Y):
write_lock(X);
unlock(Y)
read_item(X):
X=X+Y:
write_item(X);
unlock(X):

read_lock(X):
read_item(X):
write_lock(Y);
unlock(X)
read_item(Y):
Y =X+Y:
write_item(Y);
unlock(Y):

13-04-2018

Dr. Manas Khatua

18

Cont...

T,

T,

read_lock(Y):
read_item(Y):
write_lock(X);
unlock(Y)
read_item(X):
X=X+Y:
write_item(X);
unlock(X):

read_lock(X):
read_item(X):
write_lock(Y);
unlock(X)
read_item(Y):
Y =X+Y:
write_item(Y);
unlock(Y):

* because T,” will issue its write_lock(X) before it unlocks item Y;
consequently, when T,” issues its read_lock(X), it is forced to wait

AN

Equivalent
Concurrent
Schedule
which is
Inconsistent

T

read_lock(Y):
read_item(Y):
unlock(Y):

write_lock(X):;
read_item(X):
X=X+Y:
write_item(X):
unlock(X):

read_lock(X):
read_item(X):
unlock(X);
write_lock(Y):
read_item(Y):
Y =X+Y;
write_item(Y):
unlock(Y):

until T,” releases the lock by issuing an unlock (X) in the schedule.

13-04-2018

Dr. Manas Khatua

19

Conflict-Serializable Schedule

* Lock point: The point in the schedule where the transaction has obtained
its final lock (the end of its growing phase) is called the lock point of the
transaction.

* Transactions can be ordered according to their lock points.
* This ordering is a serializability ordering for the transactions.

T3: lock-X(B); Ts Te T7
d(B);

rBe?: 53 ’ 50; lock-X(A)

write(B); Ireal((j (A)

lock-X(A); ock-S(B)

read(A); regd(B)

A=A +50; write(A)

write(A); unlock(A)

unlock(B); lock-X(A)

unlock(A). read(A)

Ty: lock-S(A); write(A)

read(4); unlock(A)
lock-S(B); lock-S(A)
read(B); d(A
display(A + B); read(A)
unlock(A);
unlock(B). Figure 15.8 Partial schedule under two-phase locking.

13-04-2018 Dr. Manas Khatua 20

Shortcomings of Two-Phase Locking

‘e of Tech™®
Il @ s Remsiy i

* does not ensure freedom * (Cascading rollback may occur
from deadlock under two-phase locking
Is Tg 17
I3 Iy lock-X(A)
lock-X(B) read(A)
read(B) lock-S(B)
B:=B—50 read(B)
write(B) write(A)
lock-S(A) unlock(A)
read(A) lock-X(A)
lock-S(B) read(A)
lock-X(A) write(A)
unlock(A)
Figure 15.7 Schedule 2. :,ZZE'&;%)

* failure of T5 after the read(A) step of 77
leads to cascading rollback of T6 and 77

13-04-2018 Dr. Manas Khatua 21

Variations of Two-phase Locking

e Strict two-phase locking:
— Cascading rollbacks can be avoided by this version

— This protocol requires
* not only that locking be two phase,

* but also that all exclusive-mode locks taken by a transaction be held until that
transaction commits.

e Rigorous two-phase locking:
— transactions can be serialized in the order in which they commit
— Cascading rollbacks can be avoided

— This protocol requires that
e all locks be held until the transaction commits.

13-04-2018 Dr. Manas Khatua 22

Lock Conversion in Two-phase Locking

If lock conversion is allowed, then

— upgrading of locks (from lock-S to lock-X) must be done in the growing

phase,

— downgrading of locks (from lock-X to lock-S) must be done in the shrinking

phase

If we employ the two-phase
locking protocol, then T8 must
lock al in exclusive mode.

However, if T8 could initially lock
al in shared mode, and then
could later change the lock to
exclusive mode, we could get
more concurrency,

Tg:

read(aq);
read(as);

;’é:’:::'ld((?”);
write(aq).

: read(aq);

read(as);
display(a1 + aj).

13-04-2018 Dr. Manas Khatua

23

Cont...

Ts: reag(m); Is 1o
rea ;
(a2) lock-S(a;)
ad(), lock-S(a1)
write(ar). ock-8(a2) lock-S(a3)
-S(az
To: reag(m;; :EEE‘EE?;
read(as); R
display(a1 + a2). Eﬂ:ﬁitﬁ?;
2
lock-S(a,)
upgrade(aq)

Figure 15.9 Incomplete schedule with a lock conversion.

e Transactions T8 and 79 can run concurrently under the refined two-phase
locking protocol, as shown in the incomplete schedule of Figure 15.9.

13-04-2018 Dr. Manas Khatua 24

Lock Generation Method

* Asimple but widely used scheme automatically generates
the appropriate lock and unlock instructions for a transaction

— When a transaction T issues a read(Q) operation, the system
issues a lock-5(Q) instruction followed by the read(Q) instruction.

— When T, issues a write(Q) operation, the system checks to see
whether T, already holds a lock-X(Q).

* |f it does, then the system issues an upgrade(Q) instruction, followed by
the write(Q) instruction.

* Otherwise, the system issues a lock-X(Q) instruction, followed by the
write(Q) instruction.

— All locks obtained by a transaction are unlocked after that
transaction commits or aborts.

13-04-2018 Dr. Manas Khatua 25

Summary (of Two-Phase Locking)

Two-phase locking (with lock conversion) generates conflict-serializable
schedules, and transactions can be serialized by their lock points.

if exclusive locks are held until the end of the transaction, the schedules are
cascadeless.

Strict two-phase locking and rigorous two-phase locking (with lock
conversions) are used extensively in commercial database systems.

Note: for a set of transactions, there may be conflict-serializable schedules
that cannot be obtained through the two-phase locking protocol.

to obtain conflict-serializable schedules through non-two-phase locking
protocols, we need

— either to have additional information about the transactions
— or to impose some structure or ordering on the set of data items in the database.

13-04-2018 Dr. Manas Khatua 26

Graph-Based Protocol

If we wish to develop protocols that are not two phase, we need additional
information on how each transaction will access the database.

There are various models that can give us the additional information

The simplest model requires that we have prior knowledge about the order
in which the database items will be accessed.

Example of prior knowledge: partial ordering
— Let, a partial ordering > on thesetD={d,, d,, ..., d } of n data items.
— If d> d;, then any transaction accessing both d; and d; must access d, before d.

— partial ordering implies that the set D may now be viewed as a directed acyclic
graph, called a database graph

simple protocol using partial ordering: tree protocol or tree-locking protocol
— restricted to employ only exclusive locks (lock-X)
— Each transaction T; can lock a data item at most once
— Follow partial ordering
— Data items may be unlocked at any time.
— unlocked item cannot subsequently be relocked by same transaction .

13-04-2018 Dr. Manas Khatua 27

Cont...

* Let four transactions follow the tree
protocol on this graph.

unlock(B); unlock(E); lock-X(G); unlock(D);

* T, lock-X(B); lock-X(E); lock-X(D);
i j unlock(G).

o @ * T, lock-X(D); lock-X(H); unlock(D);

unlock(H).

* T, lock-X(B); lock-X(E); unlock(E);
unlock(B).

* T3t lock-X(D); lock-X(H); unlock(D);
unlock(H).

Figure 15.11 Tree-structured database graph. e What s conflict-serializable schedule
corresponding to the above transactions?

13-04-2018 Dr. Manas Khatua 28

Cont...

T i RE T The tree protocol ensures
lock-X(B) conflict serializable, and
lock-X(D) freedom from deadlock
lock-X(H)
unlock(D)
:Oct-ig) * The tree protocol does not
OCK- ope
unlook(B) ensure recoverability and
unlock(E) cascadelessness.
lock-X(B)
lock-X(E) -
unlock(H) e To ensure recoverability and
lock-X(G) cascadelessness:
unlock(D) .
lock-X(D) — do not release the exclusive
lock-X(H) locks until the end of the
unlock(D) transaction
unlock(H)
unlock(E)
unlock(B) — This approach reduces
unlock(G) concurrency
— Alternative approach: commit

Figure 15.12 Serializable schedule under the tree protocol.

dependency

13-04-2018 Dr. Manas Khatua 29

Commit Dependency

* Whenever a transaction T; performs a read of an
uncommitted data item, we record a commit dependency of
T. on the transaction that performed the last write to the
data item.

* Transaction T;is then not permitted to commit until the
commit of all transactions on which it has a commit
dependency

* If any of these transactions aborts, T, must also be aborted.

e |timproves concurrency than delayed unlock (i.e. at the end
of transaction)

e But, it ensures only recoverability but not cascadelessness

13-04-2018 Dr. Manas Khatua 30

Two-phase v/s Tree Locking Protocol @lﬁ

Il & s Remsiy i

* Advantages of tree-locking over two-phase locking
— It is deadlock-free,
— so no rollbacks are required.

— Unlocking may occur earlier,

— which may lead to shorter waiting times, and to an increase in
concurrency.

* Disadvantages of tree-locking compared to two-phase locking

— A transaction may have to lock data items that it does not access

* Example, a transaction that needs to access data items A and J in the database
graph (Fig. 15.11) must lock not only A and J, but also data items B, D, and H.

— So, increased locking overhead, the possibility of additional waiting
time, and a potential decrease in concurrency.

— Without prior knowledge of what data items will need to be locked,
transactions will have to lock the root of the tree !

e canreduce concurrency greatly

13-04-2018 Dr. Manas Khatua 31

Handling Deadlock and Starvation

13-04-2018 Dr. Manas Khatua 32

Deadlock Handling

e What is deadlock?

— A system is in a deadlock state if there exists a set of transactions such
that every transaction in the set is waiting for another transaction in
the set.

 Remedy to deadlock:
— rolling back some of the transactions involved in the deadlock

— Rollback of a transaction may be partial i.e. rolled back to the point
where it obtained a lock whose release resolves the deadlock.

* Two principal methods for dealing with the deadlock

— deadlock prevention
* it ensure that the system will never enter a deadlock state

— deadlock detection and recovery
* allow the system to enter a deadlock state, and then try to detect and recover

13-04-2018 Dr. Manas Khatua 33

Deadlock Prevention

e
Il & s Remsiy i

 Two approaches to deadlock prevention

1)

ensures that no cyclic waits can occur by ordering the requests for
locks, or requiring all locks to be acquired together.
Scheme 1:

* each transaction locks all its data items before it begins execution;
* either all are locked in one step or none are locked
Disadvantages:

* itis often hard to predict, before the transaction begins, what data items need
to be locked;

* data-item utilization may be very low, since many of the data items may be
locked but unused for a long time

Scheme 2:

* impose an ordering of all data items;

* transaction lock data items only in a sequence consistent with the ordering
Disadvantages:

e jtis often hard to predict, before the transaction begins, what ordering is
needed

13-04-2018

Dr. Manas Khatua 34

Cont...

Il & s Remsiy i

2) performs transaction rollback, instead of waiting for a lock, whenever
the wait could potentially result in a deadlock.

. use preemption and transaction rollbacks

* In preemption, when a transaction T; requests a lock that T; holds, the lock
granted to T, may be preempted by rolllng back of T,, and grantmg of the
lockto T:.

* To control the preemption, we assign a unique timestamp to each
transaction when it begins. The system uses these timestamps only to
decide whether a transaction should wait or roll back.

* Two deadlock-prevention schemes using timestamps:

— Scheme 1: wait—die scheme is a nonpreemptive technique

* When transaction T, requests a data item currently held by T;, T; is allowed to wait only if it
has a timestamp smaller than that of T, (thatis, T; is older than T). Otherwise, T, is rolled

back (dies).

— Scheme 2: wound—wait scheme is a preemptive technique:

* When transaction T, requests a data item currently held by T, T, is allowed to wait only if it
has a timestamp Iarger than that of T, (that is, T; is younger than T,). Otherwise, T; is rolled

back (T;is wounded by T;).
— Disadvantages of Scheme 1 & 2: unnecessary rollbacks may occur.

13-04-2018 Dr. Manas Khatua 35

Deadlock Detection

* Deadlocks can be described
precisely in terms of a directed
graph called a wait-for graph

* The set of vertices consists of all e‘

the transactions in the system

 Each edges is an ordered pair Ti
- Tj.
* Ti—> Tjimplies that transaction Ti Figure 15.13 Wait-for graph with no cycle.

is waiting for transaction Tj to
release a data item that it needs

* An edge is inserted and removed A deadlock exists in the system
dynamically when a request for

an item comes from a if and only if the wait-for graph
transaction contains a cycle.

13-04-2018 Dr. Manas Khatua 36

Deadlock Recovery

* When a detection algorithm determines that a deadlock
exists, the system must recover from the deadlock

e common solution is to roll back one or more transactions to
break the deadlock

e Three actions need to be taken:

— Selection of a victim: determine which transaction (or
transactions) to roll back to break the deadlock

— Rollback: Once we have decided that particular transaction, we
must determine how far this transaction should be rolled back.
(either do total rollback or partial rollback)

— Starvation: it may happen that the same transaction is always
picked as a victim. We should have a maximum number of

13-04-2018 Dr. Manas Khatua 37

Starvation Handling

* |Inlock-based protocol, we can avoid starvation of
transactions by granting locks in the following manner:

— When a transaction T, requests a lock on a data item Qin a
particular mode M (either shared or exclusive), the concurrency-
control manager grants the lock provided that:

1) There is no other transaction holding a lock on Q in a mode
that conflicts with M.

2) There is no other transaction that is waiting for a lock on Q
and that made its lock request before T,.

13-04-2018 Dr. Manas Khatua 38

Thanks!

13-04-2018 Dr. Manas Khatua 39

