
CS322: Database Systems

Dr. Manas Khatua

Assistant Professor

Dept. of CSE

IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Concurrency Control:
Timestamp-based Protocol,
Validation-based Protocol,

Snapshot Isolation

mailto:manaskhatua@iitj.ac.in

Timestamp-based Protocol

• Lock-based protocol determines the order between every pair of conflicting
transactions at execution time

• But, timestamp-ordering protocol determines the serializability order in
advance. It start working as soon as a transaction is created.

• With each transaction Ti in the system, we associate a unique fixed
timestamp, denoted by TS(Ti).

• This timestamp is assigned by the database system before the transaction Ti
starts execution.

• If a transaction Ti has been assigned timestamp TS(Ti), and a new transaction
Tj enters the system, then TS(Ti) < TS(Tj).

• Every transaction has a timestamp associated with it, and the ordering is
determined by the age of the transaction.

18-04-2018 2Dr. Manas Khatua

Cont…

• Methods for assigning timestamp:

– Use the value of the system clock as the timestamp

– Use a logical counter that is incremented after a new timestamp has been
assigned

• The timestamps of the transactions determine the serializability order.

• To implement this scheme, we apply two timestamps for an item Q

– W-timestamp(Q) denotes the largest timestamp of any transaction that
executed write(Q) successfully.

– R-timestamp(Q) denotes the largest timestamp of any transaction that
executed read(Q) successfully.

18-04-2018 3Dr. Manas Khatua

Timestamp-Ordering Protocol

18-04-2018 Dr. Manas Khatua 4

• The timestamp-ordering protocol ensures that any conflicting read and write
operations are executed in timestamp order.

• Suppose that transaction Ti issues read(Q).

• If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was already
overwritten. Hence, the read operation is rejected, and Ti is rolled back.

• If TS(Ti) ≥ W-timestamp(Q), then the read operation is executed, and
R-timestamp(Q) is set to the maximum of {R-timestamp(Q) and TS(Ti)}.

• Suppose that transaction Ti issues write(Q).
• If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously,

and it is not needed now. Hence, the system rejects the write operation and rolls Ti back.

• If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence,
the system rejects this write operation and rolls Ti back.

• Otherwise, the system executes the write operation and update W-timestamp(Q), sets
W-timestamp(Q) to TS(Ti).

Example

• The rolled back transaction is assigned a new timestamp and restarts.

• The timestamp-ordering protocol ensures conflict serializability
• The protocol ensures freedom from deadlock, since no transaction ever waits.
• There is a possibility of starvation of long transactions
• The protocol can generate schedules that are not recoverable

18-04-2018 Dr. Manas Khatua 5

Cont…
• To make the schedules recoverable

– Recoverability and cascadelessness can be ensured by performing all
writes together at the end of the transaction

– Recoverability and cascadelessness can also be guaranteed by using a
limited form of locking, whereby reads of uncommitted items are
postponed until the transaction that updated the item commits

– Recoverability alone can be ensured by tracking uncommitted writes,
and allowing a transaction Ti to commit only after the commit of any
transaction that wrote a value that Ti read. Commit dependencies can
be used for this purpose.

18-04-2018 Dr. Manas Khatua 6

Thomas’ Write Rule
• A modification to the timestamp-ordering protocol that allows greater potential

concurrency than timestamp protocol

18-04-2018 Dr. Manas Khatua 7

• Modification:
– Obsolete write operations can be ignored under certain circumstances. It is called Thomas’

write rule

• Suppose that transaction Ti issues write(Q).
– If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed previously,

and it is not needed now. Hence, the system rejects the write operation and rolls Ti back.

– If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q. Hence,
this write operation can be ignored.

– Otherwise, the system executes the write operation and update W-timestamp(Q), sets W-
timestamp(Q) to TS(Ti).

Validation-Based Protocols

18-04-2018 Dr. Manas Khatua 8

• A concurrency-control scheme imposes overhead of code execution
and possible delay of transactions.

• However, in cases where a majority of transactions are read-only
transactions, the rate of conflicts among transactions may be low.

• How to reduce the overhead in such cases?
– A difficulty in reducing the overhead is that we do not know in advance

which transactions will be involved in a conflict.
– We need a scheme for monitoring the system

• The validation protocol requires that each transaction Ti executes in
two or three different phases in its lifetime, depending on whether it
is a read-only or an update transaction.
– Read phase
– Validation phase
– Write phase

Cont…

18-04-2018 Dr. Manas Khatua 9

• Read phase. Transaction Ti reads the values of the various data items
and stores them in variables local to Ti. It performs all write operations
on temporary local variables, without updates of the actual database.

• Validation phase. This determines whether Ti is allowed to proceed to
the write phase without causing a violation of serializability. If a
transaction fails the validation test, the system aborts the transaction.

• Write phase. If the validation test succeeds for transaction Ti, the
temporary local variables that hold the results of any write operations
performed by Ti are copied to the database.

• To perform the validation test, we need to know when the various
phases of transactions took place. So, need of timestamps
– Start(Ti), the time when Ti started its execution
– Validation(Ti), the time when Ti finished its read phase and started its

validation phase.
– Finish(Ti), the time when Ti finished its write phase

Cont…

18-04-2018 Dr. Manas Khatua 10

• The validation test for transaction Ti requires that, for all transactions Tk
with TS(Tk) < TS(Ti), one of the following two conditions must hold

– (1) Finish(Tk) < Start(Ti).
– This condition ensures that the writes of Tk finishes before Ti starts.

OR
– (2) The set of data items written by Tk does not intersect with the set of

data items read by Ti, and
– Tk completes its write phase before Ti starts its validation phase (Start(Ti)

< Finish(Tk) < Validation(Ti)).
– This condition ensures that the writes of Tk and Ti do not overlap.

• It generates serializable schedule
• It guards against cascading rollbacks
• However, there is a possibility of starvation of long transactions

Cont…

18-04-2018 Dr. Manas Khatua 11

Snapshot Isolation
• Snapshot Isolation has gained wide acceptance in commercial and open-

source systems, including Oracle, PostgreSQL, and SQL Server because of
less complexity

• Basic Idea:
– Each transaction is given a “snapshot” of the database at the time when it

begins its execution
– It then operates on that snapshot in complete isolation from concurrent

transactions.

– The data values in the snapshot consist only of values written by committed
transactions.

– Transactions that wants to update the database must interact with potentially
conflicting concurrent update transactions before updates are actually placed
in the database.

– Updates are kept in the transaction’s private workspace until the transaction
successfully commits

– When a transaction T is allowed to commit, all the updates made by T to the
database must be done as an atomic action

18-04-2018 Dr. Manas Khatua 12

Validation Steps for Update Transactions

• Lost Update:
– Let two transactions operate in isolation using their own private

snapshots,
– neither transaction sees the update made by the other.
– If both transactions are allowed to write to the database, the first

update written will be overwritten by the second.
– The result is a lost update.

• Concurrent Transaction:
– A transaction is said to be concurrent with T if it was active or partially

committed at any point from the start of T up to and including the
time when this test is being performed.

• There are two variants of snapshot isolation, both of which prevent
lost updates.
– first committer wins
– first updater wins

18-04-2018 Dr. Manas Khatua 13

First Committer Wins
• when a transaction T enters the partially committed state, the following

actions are taken in an atomic action:

– A test is made to see if any transaction that was concurrent with T has already
written an update to the database for some data item that T intends to write.

– If some such transaction is found, then T aborts.

– If no such transaction is found, then T commits and its updates are written to
the database.

• This approach is called “first committer wins” because
– if transactions conflict, the first one to be tested using the above rule succeeds

in writing its updates, while the subsequent ones are forced to abort.

18-04-2018 Dr. Manas Khatua 14

First Updater Wins
• The system uses a locking mechanism that applies only to updates
• When a transaction Ti attempts to update a data item, it requests a write

lock on that data item.

• If the lock is not held by a concurrent transaction, the following steps are
taken after the lock is acquired:
– If the item has been updated by any concurrent transaction, then Ti aborts.
– Otherwise, Ti may proceed with its execution including possibly committing.

• If, however, some other concurrent transaction Tj already holds a write lock
on that data item, then Ti cannot proceed and the following rules are
followed:
– Ti waits until Tj aborts or commits.

• This approach is called “first updater wins” because
– if transactions conflict, the first one to obtain the lock is the one that is

permitted to commit and perform its update.
– Those that attempt the update later abort unless the first updater subsequently

aborts for some other reason.

18-04-2018 Dr. Manas Khatua 15

Serializability Issues: Case 1
• One serious problem: snapshot isolation does not ensure serializability

• Few non-serializable executions under snapshot isolation

18-04-2018 Dr. Manas Khatua 16

T1 T2

Read(A) Read(A)

Read(B) Read(B)

Write(B) Write(A)

T1 T2

• Since T1 and T2 are concurrent, neither
transaction sees the update by the other in
its snapshot.

• Since they update different data items,
both are allowed to commit regardless of
whether the system uses the first-update-
wins policy or the first-committer-wins
policy.

• However, Precedence Graph has cycle; so
the schedule is not serializable

Cont…
• Write skew: This situation, where each of a pair of transactions has read data that is

written by the other, but there is no data written by both transactions

• Let, a customer has Current Account (CA) and Savings Account (SA).
• Present cash in CA = Rs. 100, and in SA= Rs. 200
• Suppose that the bank enforces the integrity constraint that the sum of the balances

in the checking and the savings account of a customer must not be negative.
• Suppose that transaction T1 withdraws Rs.200 from the CA, after verifying the

integrity constraint by reading both balances.
• Suppose that concurrent transaction T2 withdraws Rs.200 from the SA, again after

verifying the integrity constraint.
• Since each of the transactions checks the integrity constraint on its own snapshot,

there withdrawal do not violate the constraint.
• Under snapshot isolation both of them can commit.

• Does it create any problem?
– Yes, the sum of the balances is Rs.-100, violating the integrity constraint.

• Possible Solution:
– the database system must check these constraints on the current state of the database at

the time of commit.

18-04-2018 Dr. Manas Khatua 17

Serializability Issues: Case 2
• Running these two transactions concurrently causes

no problem.
• There is no cycle in the precedence graph

• Suppose that, after T1 commits but before T2
commits, a new read-only transaction T3 enters the
system and T3 reads both A and B.

• Its snapshot includes the update by T1 because T1
has already committed. However, since T2 has not
committed, its update has not yet been written to
the database and is not included in the snapshot
seen by T3 .

• The updated precedence graph has cycle.

18-04-2018 Dr. Manas Khatua 18

T1 T2

Read(A)

Read(B) Read(B)

Write(B) Write(A)

T1 T2

T1 T2

T3

T1 T2 T3

Read(A)

Read(B) Read(B)

Write(B) Write(A)

Commit

Read(A)

Read(B)

Cont…
• Since consistency is the goal, we can accept the potential for non-serializable

executions if we are sure that those non-serializable executions that might occur will
not lead to inconsistency.

• Let we are dealing with a financial database
• Let the financial applications create consecutive sequence numbers, for example to

number bills, by taking the maximum current bill number and adding 1 to the value
to get a new bill number.

• If two such transactions run concurrently, each would see the same set of bills in its
snapshot, and each would create a new bill with the same number!

• Creating two bills with the same number could have serious legal implications.

• The above problem is an example of the phantom phenomenon, since the insert
performed by each transaction conflicts with the read performed by the other
transaction to find the maximum bill number, but the conflict is not detected by
snapshot isolation.

• An application developer can guard against certain snapshot anomalies by
appending a for update clause to the SQL select query.

18-04-2018 Dr. Manas Khatua 19

18-04-2018 20Dr. Manas Khatua

