CS322: Database Systems

Indexing and Hashing

Dr. Manas Khatua
Assistant Professor
Dept. of CSE
IIT Jodhpur
E-mail: manaskhatua@iitj.ac.in

mailto:manaskhatua@iitj.ac.in

Why Indexing?

Many queries reference only a small proportion of the records in a file

It is inefficient to read every tuple in the relation to fetch the appropriate
tuples

Ideally, the system should be able to locate these records directly.

To allow these forms of access, we design additional structures that we
associate with files.

Indexing mechanisms used to speed up access to desired data.
Search Key — an attribute or set of attributes used to look up records in a file.
An index file consists of records (called index entries) of the form:

search-key pointer

Index files are typically much smaller than the original file

Two basic kinds of indices:
— Ordered indices: search keys are stored in sorted order

— Hash indices: search keys are distributed uniformly across “buckets” using a
“hash function”.

04-05-2018 Dr. Manas Khatua 2

Index Evaluation Metrics

Access types: The types of access,
* E.g., records with a specified value in the attribute or records
with an attribute value falling in a specified range of values.
Access time
Insertion time

Deletion time

Space overhead: The additional space occupied by an index
structure

04-05-2018 Dr. Manas Khatua 3

Ordered Indices
for
Index-Sequential File

04-05-2018 Dr. Manas Khatua 4

Ordered Indices

In an ordered index, index entries are stored sorted on the search key value.
— E.g., author catalog in library.

Primary index: in a sequentially ordered file, the index whose search key
specifies the sequential order of the file.

— Also called clustering index
— The search key of a primary index is usually but not necessarily the primary key.

Secondary index: an index whose search key specifies an order different from
the sequential order of the file.

— Also called non-clustering index.
Index-sequential file: ordered sequential file with a primary index.

There are two types of ordered indices
— Dense index
— Sparse index

04-05-2018 Dr. Manas Khatua 5

Dense Index Files

Dense index: Index record appears for every search-key value in the file.
— E.g.index on ID attribute of instructor relation

10101

12121

15151

22222

32343

33456

45565

58583

76543

76766

83821

98345

- 10101 |Srinivasan | Comp. Sci. | 65000
~ 12121 |[Wu Finance 90000
~ 15151 |Mozart Music 40000
~(22222 | Einstein Physics 95000
~| 32343 |El Said History 60000
~| 33456 |Gold Physics 87000
~| 45565 |Katz Comp. Sci. | 75000
~| 58583 |Califieri History 62000
-| 76543 |Singh Finance 80000
~| 76766 | Crick Biology 72000
~| 83821 |Brandt Comp. Sci. | 92000
- 98345 |Kim Elec. Eng. | 80000

Figure 11.2 Dense index.

J AVAVAVAVAVAVAVAVAVAVAV

04-05-2018

Dr. Manas Khatua

Cont...

* Dense index on dept_name, with instructor file sorted on dept_name

Biology ~ 76766 | Crick Biology 72000 1
Comp. Sci. ~ 10101 | Srinivasan| Comp. Sci. | 65000 —
Elec. Eng. N 45565 | Katz Comp. Sci. | 75000 |
Finance \\ 83821 | Brandt Comp. Sci. | 92000 _7
History \\ 98345 | Kim Elec. Eng. 80000 _7
Music \ 12121 | Wu Finance 90000 _7
Physics \\\ 76543 | Singh Finance 80000 1
32343 | El Said History 60000 _7
58583 | Califieri | History 62000 P
15151 | Mozart Music 40000 .
22222 | Einstein | Physics 95000 .
33465 | Gold Physics 87000 %_

04-05-2018

Dr. Manas Khatua

Sparse Index Files

* Sparse Index: contains index records for only some search-key values.

— Applicable when records are sequentially ordered on search-key

* To locate a record with search-key value K we:

— Find index record with largest search-key value < K
— Search file sequentially starting at the record to which the index record

points

10101 > 10101 |Srinivasan| Comp. Sci.| 65000
32343 | N 12121 |Wu Finance 90000
76766 | \ 15151 |[Mozart | Music 40000
22222 |Einstein | Physics 95000
32343 |El Said History 60000
33456 |Gold Physics 87000
45565 |Katz Comp. Sci.| 75000
58583 |Califieri | History 62000
76543 |Singh Finance 80000
76766 |Crick Biology 72000
83821 |Brandt Comp. Sci. | 92000
98345 |Kim Elec. Eng. | 80000

J AVAVAVAVAVAVAVAVAVAVAV

04-05-2018

Dr. Manas Khatua

(o]

Cont...

 Compared to Dense indices:
— Less space and less maintenance overhead for insertions and deletions.
— Generally slower than dense index for locating records.

* Good tradeoff: sparse index with an index entry for every block in file

Y

data
\| block 0

data
block 1

04-05-2018 Dr. Manas Khatua 9

Secondary Indices

Il & s Remsiy i

40000

60000

ANIEAN

62000

\

65000

72000

75000

80000

87000

90000

92000

95000

/N

10101 | Srinivasan | Comp. Sci. | 65000 _P
12121 |Wu Finance 90000 ~>
15151 | Mozart Music 40000 —
22222 | Einstein | Physics 95000 _>
32343 | El Said History 60000 _P
33456 | Gold Physics 87000 _P
45565 |Katz Comp. Sci. | 75000 _>
58583 | Califieri | History 62000 _>
76543 | Singh Finance 80000 _>
76766 | Crick Biology 72000 —->
83821 |Brandt Comp. Sci. | 92000 _P
98345 | Kim Elec. Eng. | 80000 _ZJ_

Secondary index on salary field of instructor

* Index record (based on salary) points to a bucket that contains pointers to all
the actual records (w.r.t. search key) with that particular search-key value.

* Secondary indices must be dense

04-05-2018

Dr. Manas Khatua

Primary and Secondary Indices

* Indices offer substantial benefits when searching for records.

* But, updating indices imposes overhead on database modification --when a
file is modified, every index on the file must be updated,

e Sequential scan using primary index is efficient, but a sequential scan using a
secondary index is expensive as

— Each record access may fetch a new block from disk

— Block fetch requires about 5 to 10 milliseconds, versus about 100
nanoseconds for memory access

* Secondary indices improve the performance of queries that use keys other
than the search key of the clustering index (i.e. primary index)

04-05-2018 Dr. Manas Khatua 11

Cont...

Suppose we build a dense index on a relation with 10,00,00,000 tuples
Let us assume that 100 index entries fit on a 4 KB block.
Thus, our index occupies 10,00,000 blocks =4 GB !

When the index is so large that not all of it can be kept in memory, index
blocks must be fetched from disk when required.

The search for an entry in the index then requires several disk-block reads.

Solution: Binary Search on Index

Binary search can be used on the index file to locate an entry
For a 10,000-block index, binary search requires 14 block reads.

On a disk system where a block read takes on average 10 milliseconds, we would
be able to carry out only 7 index searches a second

Note that if overflow blocks have been used for inserting Index, binary search is
not possible as the indices are not contiguous and are not in same block.

In this case, sequential search is used.

04-05-2018 Dr. Manas Khatua 12

Multilevel Index

Il & s Remsiy i

When primary index does not fit in

memory, access becomes expensive. index data
Y P —block 0 \| block 0

b

* Solution: treat primary index kept on

disk as a sequential file and construct . .
. . index —n data
a sparse index on it. block 1 lock 1
— outer index — a sparse index of outer index -

inner index

primary index

— inner index — the primary index file

* |feven outer index is too large to fit in
main memory, yet another level of
index can be created, and so on.

* Indices at all levels must be updated
on insertion or deletion from the file.

04-05-2018 Dr. Manas Khatua 13

Index Update: Deletion

Il & s Remsiy i

10101

32343

10101

Srinivasan

Comp. Sci.

65000

76766

If deleted record was the only
record in the file with its
particular search-key value,
the search-key is deleted from
the index also.

* Single-level index deletion:

12121 |Wu Finance 90000 .
15151 |Mozart Music 40000 .
22222 |Einstein | Physics 95000 .
32343 |El Said History 60000 J
33456 |Gold Physics 87000 .
45565 |Katz Comp. Sci.| 75000

58583 |Califieri | History 62000 ~
76543 |Singh Finance 80000 -
76766 |Crick Biology 72000 4
83821 |Brandt Comp. Sci. | 92000 ~
98345 |Kim Elec. Eng. | 80000 _

vavvvvvvvvv

— Dense indices — deletion of search-key is similar to file record deletion.

— Sparse indices —

e if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in
the file (in search-key order).

* If the next search-key value already has an index entry, the entry is
deleted instead of being replaced.

04-05-2018

Dr. Manas Khatua

Index Update: Insertion

* Single-level index insertion:

— Perform a lookup using the search-key value appearing in the record to be
inserted.

— Dense indices — if the search-key value does not appear in the index,
insert it.

— Sparse indices — if index stores an entry for each block of the file, no
change needs to be made to the index unless a new block is created.

* If a new block is created, the first search-key value appearing in the
new block is inserted into the index.

* Multilevel insertion and deletion:
— algorithms are simple extensions of the single-level algorithms

04-05-2018 Dr. Manas Khatua 15

B*-Tree Indices
for
B*-Tree Index File

04-05-2018 Dr. Manas Khatua 16

B+-Tree Index Files

 Main disadvantage of the index-sequential file organization

— Performance degrades as the file grows
* both for index lookups and for sequential scans through the data

* This degradation can be remedied by reorganization of the file

* But, frequent reorganizations are undesirable

* Solution: B*-tree index structure
— B*-tree index takes the form of a balanced tree
— Each nonleaf node in an n-ary B*-tree has between [n/2] and n children
— But, imposes performance overhead on insertion and deletion,
— And, adds space overhead
— Advantage that the cost of file re-organization is avoided.

04-05-2018 Dr. Manas Khatua 17

Structure of a B*-Tree

 B*-tree index is a multilevel index, but it has a structure that differs
from that of the multilevel index-sequential file.

Py Ki P> Pp1 | Ky Py

Figure 11.7 Typical node of a B™-tree.

A simple B*-tree example
linking the keys 1-7 to data
values d;-d-.

Tree is balanced.
Keys are sorted

The linked list (at leaf level)
allows rapid in-order traversal.

This particular tree's branching d. d 4. d, d. d, d,
factor is 4.

04-05-2018 Dr. Manas Khatua 18

Cont...

e
Il & s Remsiy i

 Leaf Node:
— Each leaf can hold up to (n-1) values.
— Leaf nodes contain as few as ceiling[(n — 1)/2] values.

— The ranges of values in each leaf do not overlap, except if there are duplicate
search-key values

* Nonleaf Node
— form a multilevel (sparse) index on the leaf nodes

— nonleaf nodes is the same as that for leaf nodes, except that all pointers are
pointers to tree nodes

— A nonleaf node may hold up to n pointers, and must hold at least ceiling[n/2]
pointers

— The number of pointers in a node is called the fanout of the node.
— Nonleaf nodes are also referred to as internal nodes.

e Root Node
— Unlike other nonleaf nodes, the root node can hold fewer than n/2 pointers

— however, it must hold at least two pointers, unless the tree consists of only one
node.

04-05-2018 Dr. Manas Khatua 19

Cont...

* Let the search key is name of the instructor relation file;
 Aleaf node is shown below

leaf node

Brandt

Califieri

Crick

» Pointer to next leaf node

Y

Y Y

10101 | Srinivasan | Comp. Sci.| 65000
12121 | Wu Finance 90000
15151 | Mozart | Music 40000
22222 | Einstein | Physics 95000
32343 | ElSaid | History 80000
33456 | Gold Physics 87000
45565 | Katz Comp. Sci.| 75000
58583 | Califieri | History 60000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci.| 92000
98345 | Kim Elec. Eng. | 80000

04-05-2018

Dr. Manas Khatua

20

B*-Tree for Instructor

|| Mozaat|

(1=

| Binstein|

| Gold |

—» 10101 | Srinivasan | Comp. 5ci. | 65000
w4 12121 | Wu Finance 90000
—» 15151 | Mozart Music 40000
» 22222 Einstein Physics 95000
» 32343 | El 5aid History 50000
» 33456 | Gold Physics 87000
» 45565 | Katz Comp. Sci. | 75000
» 58583 | Califier History 60000
——» 76543 | Singh Finance 50000
» 76766 | Crick Biology 72000
» 83821 | Brandt Comp. 5ci. | 92000
L 98345 | Kim Elec. Eng. 80000
B*-tree for instructor file (n = 4)
04-05-2018 Dr. Manas Khatua 21

Cont..

e The modified B*-Tree for Instructor when n=6

Katz Kim »| | Mozart | | Singh | | Srinivasan | [Wu

B*-tree for instructor file (n = 6)

* Observe that the height of this tree is less than that of the previous
tree, which had n = 4.

 B*-trees are all balanced i.e., the length of every path from the root
to a leaf node is the same

* the balance property ensures good performance for lookup,
insertion, and deletion.

04-05-2018 Dr. Manas Khatua 22

Queries on B*-Tree

 we wish to find records with a search-key value of V

e Starting with the root as the current node, the function repeats the
following steps until a leaf node is reached.

 The current node is examined, looking for the smallest i such that
search-key value K, >= V.

— Suppose such value K; is found; then
e if K. ==V, the current node is set to the node pointed to by P, ,,
* otherwise K, >V, and the current node is set to the node pointed to by P,

— If no such value K; is found, then
* clearly V>K__,, where P, is the last nonnull pointer in the node.
* the current node is set to that pointed to by P,

 The above procedure is repeated until a leaf node is reached.

04-05-2018 Dr. Manas Khatua 23

Cont...

e At the leaf node,

— let K; be the first search-key ==
* pointer P; directs us to a record with search-key value K; .
* then returns the leaf node L and the index i.

— If not found
* no record with key value V exists in the relation
* return failure status

— If there is at most one record with a search key value V,
corresponding pointer retrieve the record and is done

— If there are more than one matching record, the remaining
records also need to be fetched

— How to find all other records with search-key value V?

* If node L contains at least one search-key value greater than V, then
there are no more records matching V.

* Otherwise, the next leaf, pointed to by P, may contain further entries
for V. The node pointed to by P, must then be searched.

04-05-2018 Dr. Manas Khatua 24

B*-Tree v/s Balanced Binary Search Tree

* In processing a query, we traverse a path in the tree from the root to some
leaf node.

* If there are N records in the file, the path is no longer than [log, 5 (N1
* |In practice, only a few nodes need to be accessed.

* Typically, a node is made to be the same size as a disk block, which is
typically 4 kilobytes

* With a search-key size of 32 bytes, and a disk-pointer size of 8 bytes, n is
around 100 in a B*-Tree.

 With n =100, if we have 1 million search-key values in the file, a lookup
requires only log.,(1,000,000) = 4 nodes to be accessed.

* Thus, at most 4 blocks need to be read from disk for the lookup.

* In abalanced binary tree, the path for a lookup can be of length [log,(N)]

* Inthe previous example, a balanced binary tree requires around 20 node
accesses.

04-05-2018 Dr. Manas Khatua 25

Insertion into B*-Tree

* We first find the leaf node in which the search-key value would appear

We then insert an entry (that is, a search-key value and record pointer pair) in the
leaf node, positioning it such that the search-keys are still in order.

 Maintain n-ary property using node splitting.

Il @ s Remsiy i

[TMozart | | i [e

| |Einstein| | Gold || —l_l |T|§im'vasan|ll I || Internal nodes
Leaf nodes--i
Voo T~y N T~ .
Brandt|I|Ca]jﬁeri| |Crick| I-I—rlllEinsteinlllEI Saidl | H-»-lll Gold |.| Katz ||| Kiml-l-»lllMozartlll Singh | | |-|->-|T|§inivasan|I|Wu | | | |

| |Mozart| | | I
Insert “Adams” / \ Casel:
k Splitting Leaf Node
[[Caifieri[[Einstein] [Gold] srinivasan| [[[[}

Aderms| [Brandt] | |}>| [Califieni] [Crick] | [}~ [Einstein] [E1Said] | 3] [Gold] [Katz] [Kim|3~| [Mozar{] [Singh] | |3~| [Seinivasan] [Wa] |]|

04-05-2018 Dr. Manas Khatua 26

Insertion into B*-Tree

8 of Tech®
Il @ s Rerrishy I
IIMozartII I
?Emstml<<mvamll 1l
Adams| [Brandt|| [}{ |Califieri| |Crick| [[[Einstein| [E1 Said] | 1o{ TGold] [Katz] [Kim|[3>| [Mozart] [Singh|| |4 [Scirivasan] [We] | ||
‘ ||| Gotd [[Mozart [[[} Case2:
Insert “Lamport”

Splitting Nonleaf Node
] [[xim] [1] ||| srintvasan [[|| []

, Califieri |.| Einstein |‘|

P e e O e e ey e e O) e |

 When an overfull nonleaf node is split, the child pointers are divided among the
original and the newly created nodes

* In the worst case, all nodes along the path to the root must be split. If the root itself
is split, the entire tree becomes deeper.

04-05-2018 Dr. Manas Khatua 27

Deletion from B*-Tree

Il @ s Remsiy i

[|[Mozart] | 1l

[[catifieri] [Einstein] [Gold[| | [srinivasan |
Adams| [Brandt| [[}+{ [Califieri| |Crick| | [+ |Einstein| [E1Said| | [~] |Gold| [Katz| [Kim[{~| [Mozart| [Singh| | [4| [Stinivasan| [wu| [||

Llcoa]]]

Delete “Srinivasan”

Callﬁerll |Emstem| | | jl Mozartl ;l | I | |

Adams| |Brandt| | [{| |Califieri| [Crick|| [{~| |Einstein| [E1Said| | |4>{ [Gold| |Katz| |Kim | klMozartl | Singh| | Wul |

* Deleting “Srinivasan” causes merging of under-full leaves as leaf node must
hold at least ceil(n-1/2) pointers. But “Wu” will have only one pointer.

* Borrow from sibling node is not possible in this case.

04-05-2018 Dr. Manas Khatua 28

Deletion from B*-Tree

Deletion of “Singh” and “Wu” || Gotd l&
Califier| [Einstein] | [xm [T T 11
Adams| [Brandt| | || |Califieri| | Crick Einstein| |El Said 1> |Gold| |Katz +>| [Kim [| Mozart

e Leaf containing “Singh” and “Wu” became underfull, and borrowed a value
“Kim” from its left sibling

e Search-key value in the parent changes as a result

04-05-2018 Dr. Manas Khatua 29

Deletion from B*-Tree

Deletion of “Gold”

Califieri| |Einstein| | Katz

—— [

Califieri| |Crick > |Einstein | |El Said Katz | [Kim| [Mozart

* Leaf Node with “Gold, Katz” became underfull, and was merged with its sibling

e Parent node becomes underfull, and is merged with its sibling
— Value separating two nodes (at the parent) is pulled down when merging

* Root node then has only one child, and is deleted

04-05-2018 Dr. Manas Khatua 30

B*-Tree File Organization

e
Il & s Remsiy i

The main drawback of index-sequential file organization is the degradation of
performance as the file grows

— With growth, an increasing percentage of index entries
— and actual records become out of order,
— and are stored in overflow blocks.

We solve the degradation of index lookups by using B*-tree indices on the file.

We solve the degradation problem for storing the actual records by using the leaf
level of the B*-tree to organize the blocks containing the actual records.

We use the B+-tree structure not only as an index, but also as an organizer for records
in a file.

In a B+-tree file organization, the leaf nodes of the tree store records, instead of
storing pointers to records.

Since records are usually larger than pointers, the maximum number of records that
can be stored in a leaf node is less than the number of pointers in a nonleaf node.

Insertion and deletion of records from a B*-tree file organization are handled in the
same way as insertion and deletion of entries in a B*-tree index.

04-05-2018 Dr. Manas Khatua 31

Cont...

AAL B8 [[P 09 [EFH{EN] G 1)
(’2)
0O 08 | [GCo [[MHNH]®6)

Example of B*-tree File Organization

* Good space utilization is important since records use more space than pointers.

04-05-2018 Dr. Manas Khatua 32

Hash Indexing
Hash File Organization

04-05-2018 Dr. Manas Khatua 33

Static Hashing

The main drawback of sequential file organization is that
— we must access an index structure to locate data,
— or must use binary search,

— that results in more 1/O operations.

* File organizations based on the technique of hashing allow us to avoid
accessing an index structure.

* Hashing also provides a way of constructing indices.

 We shall use the term bucket to denote a unit of storage that can
store one or more records.

* A bucket is typically a disk block.

* Formally, let K denote the set of all search-key values, and let B
denote the set of all bucket addresses.

A hash function h is a function from K to B.

04-05-2018 Dr. Manas Khatua 34

Example

Il @ s Remsiy i

Hash file organization of instructor file, using dept_name as key

bucket 0
bucket 1
15151| Mozart Music |40000
bucket 2
32343| El Said History {80000
58583 | Califieri | History (60000
bucket 3
22222| Einstein | Physics 95000
33456| Gold Physics |87000
98345| Kim Elec. Eng.|80000

bucket 4

12121 | Wu Finance (90000
76543 | Singh Finance (80000
bucket 5

76766| Crick Biology |72000
bucket 6

10101 |Srinivasan |Comp. Sci.|65000
45565 |Katz Comp. Sci.[75000
83821 |Brandt |Comp. Sci.[92000
bucket 7

04-05-2018

Dr. Manas Khatua

35

Hash Function

* Hashing can be used for two different purposes:

— hash file organization

* obtain the address of the disk block containing a desired record directly by
computing a function on the search-key value of the record.

— hash index organization
* organize the search keys, with their associated pointers, into a hash file structure.

* Good hash function: distributes search-key values to buckets
effectively, which means

— The distribution is uniform

* the hash function assigns each bucket the same number of search-key values
from the set of all possible search-key values.

— The distribution is random

* the hash value will not be correlated to any externally visible ordering on the
search-key values, such as alphabetic ordering or ordering by the length of the
search keys

04-05-2018 Dr. Manas Khatua 36

Example

e (Case 1:

— Let a hash function for the instructor file using the search key dept name.

— Assume that we decide to have 26 buckets, and we define a hash function
that maps names beginning with the /-th letter of the alphabet to the i-th
bucket.

— it fails to provide a uniform distribution, since we expect more names to
begin with such letters as B and R than Q and X, for example. It is not
random as well.

e (Case 2:

— suppose that we want a hash function on the search key salary.

— we use a hash function that divides the values into 10 ranges, say $30,000—
S40,000, S40,001-S50,000 and so on.

— The distribution of search-key values is uniform (since each bucket has the
same number of different salary values), but is not random (since salaries
between $60,001 and $70,000 are far more common than the remaining),
and the distribution of records is not uniform

04-05-2018 Dr. Manas Khatua 37

Handling of Bucket Overflows

Il & s Remsiy i

 Hence, hash functions require careful design.
— A bad hash function may result in lookup taking time proportional to the number
of search keys in the file.

— A well designed function gives an average-case lookup time that is a (small)
constant, independent of the number of search keys in the file.

* |If the mapped bucket does not have enough space, a bucket overflow occurs.

— Insufficient buckets
* The number of buckets (ng) must be chosen such that ng > (n./f)),
* n,denotes the total number of records that will be stored and
* f, denotes the number of records that will fit in a bucket.

— Skew
* Some buckets are assigned more records than are others, so a bucket may overflow even
when other buckets still have space.
* Reasons: (1) Multiple records may have the same search key. (2) The chosen hash function
may result in nonuniform distribution of search keys.

* Despite allocation of a few more buckets than required, bucket overflow can
still occur. We handle bucket overflow by using overflow buckets.

* All the overflow buckets of a given bucket are chained together in a linked list,
called overflow chaining.

04-05-2018 Dr. Manas Khatua 38

Open and Closed Hashing

Closed Hashing:
— the set of buckets is not fixed;
— allows overflow chaining
— Application: in database systems; as

bucket 0

bucket 1 — —

deletion under open hashing is overflow buckets for bucket
troublesome bucket 2
Open hashing: bucket 3
— the set of buckets is fixed;
_ there are no OverfIOW ChainS' Figure 11.24 Overflow chaining in a hash structure.
V4

— One solution: linear probing - use
the next bucket (in cyclic order) that
has space

— Other Solution: Rehashing
Application: used to construct

symbol tables for compilers and
assemblers

04-05-2018 Dr. Manas Khatua 39

Hash Indices

e
Il & s Remsiy i

bucket 0
76766 | — e Hashing can be
Hash index on instructor relation, used not only for
bucket 1 on attribute 1D file organization,
45565 but also for index-
76543 .
structure creation.
bucket 2
22222 76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. 65000 H
bucket 3 45565 | Katz Comp. Sci. 75000 © A hash index
13; 0;3 83821 | Brandt Comp. Sci. 92000 organizes t h e
98345 | Kim E_lec. Eng. 80000 search keysl with
12121 | Wu Finance 90000 h . . t d
bucket 4 76543 | Singh Finance 80000 their associate
32343 | El Said History 60000 record pointers,
58583 | Califieri History 62000 : :
15151 | Mozart Music 40000 Into a haSh fl le
bucket 5 22222 | Einstein Physics 95000 structure.
15151 J_) 33465 | Gold Physics 87000
33456
bucket 6 // e Strictly speaking,
83821 hash indices are
always secondary
bucket 7 . .
T indices
32343 | +——

04-05-2018 Dr. Manas Khatua 40

Deficiencies of Static Hashing

* In static hashing,

— We must choose the hash function when we implement the system, and
it cannot be changed easily thereafter

— Function h maps search-key values to a fixed set of B of bucket addresses.

— However, databases grow or shrink with time.

* Ifinitial number of buckets is too small, and file grows, performance will degrade
due to too much overflows.

* If space is allocated for anticipated growth, a significant amount of space will be
wasted initially (and buckets will be underfull).

* If database shrinks, again space will be wasted.

* One solution: periodic re-organization of the file with a new hash
function

— Expensive, disrupts normal operations

e Better solution: allow the number of buckets to be modified
dynamically (i.e. dynamic hashing)

04-05-2018 Dr. Manas Khatua 41

Dynamic Hashing

Good for database that grows and shrinks in size
Allows the hash function to be modified dynamically

Two popular forms of dynamic hashing
— Extendable hashing
— Linear hashing

 Extendable hashing
— Hash function Eenerates values over a large range — typically b-bit
integers, with

— At any time use only a prefix of the hash function to index into a table of
bucket addresses.

— Let the length of the prefix be i bits, 0 <i<32.
* Bucket address table size = 2'; Initiallyi=0
* Value of i grows and shrinks as the size of the database grows and shrinks.
— Multiple entries in the bucket address table may point to a bucket (why?)

— Thus, actual number of buckets is < 2

. Eheknumber of buckets also changes dynamically due to coalescing and splitting of
uckets

04-05-2018 Dr. Manas Khatua 42

Extendable Hash Structure

hash prefix
; i,
i
f
00.. /
1.. ~
0 bucket 1
10.. s .
\ 12
11.. \
) bucket 2
I
bucket address table bucket 3

* In this structure, i, =i;=i; whereasi; =i—1
* do not create a bucket for each hash value

04-05-2018 Dr. Manas Khatua

43

Example: for Extendable Hashing

dept_name h(dept_name)

Biology 0010 1101 1111 1011 0010 1100 0011 0000
Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 0100 0011 1010 1100 1100 0110 1101 1111

Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010
Music 0011 0101 1010 0110 1100 1001 1110 1011
Physics 1001 1000 0011 1111 1001 1100 0000 0001

Hash function for dept_name.

* Operations:

— Queries: To locate the bucket containing search-key value K, the system
takes the first / high-order bits of h(K,), looks at the corresponding table
entry for this bit string, and follows the bucket pointer in the table entry.

— Insertion
— Deletion

04-05-2018 Dr. Manas Khatua 44

Extendable Hashing: Insertion

e Initial Hash structure; Let the allowed bucket size = 2

hash prefix

0

_f

bucket address table

n u

bucket 1

Hash structure after insertion of “Mozart”, “Srinivasan”, and “Wu” records
Splitting of record bucket is required

hash prefix
1 1
1l __— T*|15151|Mozart |Music |40000
bucket address table 1
10101 |Srinivasan|Comp. Sci.| 90000
12121 (Wu Finance 90000
04-05-2018 Dr. Manas Khatua 45

Extendable Hashing: Insertion

- Hash structure after insertion of “Einstein” record
* Again, Splitting is required

hash prefix

2
7—\k 15151 |Mozart Music 40000

-

12121| Wu Finance |90000
22222| Einstein | Physics | 95000

bucket address table

10101|Srinivasan|Comp. Sci.| 65000

04-05-2018 Dr. Manas Khatua 46

Extendable Hashing: Insertion

Hash structure after insertion of “Gold” and “El Said” records

1

h;‘Sh preﬁ’f 15151 | Mozart | Music 40000
— 3
— 22222 | Einstein | Physics 95000
- 33456 | Gold Physics 87000
//\' 3
~ 12121 | Wu Finance 90000
bucket addressN)
10101 | Srinivasan|Comp. Sci.| 65000
32343 | El Said History 60000

04-05-2018 Dr. Manas Khatua 47

Extendable Hashing: Insertion

Hash structure after insertion of “Katz” record

1
15151 | Mozart | Music 40000
hash prefix
3
—] 3
— 22222 | Einstein | Physics 95000
— 33456 | Gold Physics 87000
3
| /12121 | Wu Finance 90000
B 3
bucket address table 32343 | ElSaid | History 60000
3
10101 |Srinivasan| Comp. Sci. | 65000
e it || (G el 7000 |

04-05-2018 Dr. Manas Khatua 48

Extendable Hashing: Insertion

Il & g sk I
2
15151 | Mozart | Music 40000 ° After the insertion
Crick 3 . .
76766 | Cri Biology 72000 of “Cric k”, “Sin g h”,
o L) V24
hash prefix 5 Califieri”, “Brandt
3 22222 | Einstein | Physics 95000
— 33456 | Gold Physics 87000 e (QOverflow bucket s
— required
— 3
— 12121 | Wu Finance 90000
__,/—» 76543 | Singh Finance 80000
—] 3
“_v 32343 | E1Said | History | 60000
bucket address N 58583 | Califieri | History | 62000

10101 (Srinivasan|Comp. Sci. | 65000 83821 Brandt Comp. Sci. | 92000
45565 |Katz Comp. Sci. |75000

04-05-2018 Dr. Manas Khatua 49

Extendable Hashing: Insertion

Il @ s Remsiy i

15151 | Mozart | Music 40000
76766 | Crick Biology 72000

e After the insertion of
(IKimII

98345 | Kim Elec. Eng. | 80000

hash prefix
3

22222 Einstein | Physics 95000
33456 | Gold Physics 87000

3

3
_ 12121 | Wu Finance 90000
76543 | Singh Finance 80000
~]
bucket address table 3

32343 | El1Said | History 60000
58583 | Califieri | History 62000

10101 |Srinivasan Comp. Sci. | 65000 83821| Brandt Comp. Sci. | 92000
45565 |Katz Comp. Sci. | 75000

04-05-2018 Dr. Manas Khatua 50

Extendable Hashing: Insertion Rule

To split a bucket j when inserting record with search-key value K::

* Ifi>i;(more than one pointer to bucket j)
— allocate a new bucket z, and set/;=i,= (j;+ 1)

— Update the second half of the bucket address table entries originally
pointing to j, to point to z

— remove each record in bucket j and re-insert (in j or 2)

— re-compute new bucket for K; and insert record in the bucket

(further splitting is required if the bucket is still full)

* Ifi=i;(only one pointer to bucket j)

If/ reaches some limit b, or too many splits have happened in this
insertion, create an overflow bucket
— Else
* increment i and double the size of the bucket address table.

. IBepllijce each entry in the table by two entries that point to the same
ucket

* re-compute new bucket address table entry for K;
Now i >J; so use the first case above.

04-05-2018 Dr. Manas Khatua 51

Extendable Hashing: Deletion Rule

* To delete a key value,
— locate it in its bucket and remove it.

— The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).

— Coalescing of buckets can be done (can coalesce only with a “buddy”
bucket having same value of i;and same i;—1 prefix, if it is present)

— Decreasing bucket address table size is also possible

* Note: decreasing bucket address table size is an expensive operation and
should be done only if number of buckets becomes much smaller than the
size of the table

04-05-2018 Dr. Manas Khatua 52

Performance Analysis

* Benefits of extendable hashing:
— Hash performance does not degrade with growth of file
— Minimal space overhead

* Disadvantages of extendable hashing
— Extra level of indirection to find desired record
— Bucket address table may itself become very big (larger than memory)
e Cannot allocate very large contiguous areas on disk either

e Solution: B*-tree structure to locate desired record in bucket
address table

— Changing size of bucket address table is an expensive operation

* |n practice:
— Oracle supports static hash organization, but not hash indices

— SQLServer supports only B*-trees

04-05-2018 Dr. Manas Khatua 53

Thanks!

04-05-2018 Dr. Manas Khatua 54

