
CS322: Database Systems

Dr. Manas Khatua

Assistant Professor

Dept. of CSE

IIT Jodhpur

E-mail: manaskhatua@iitj.ac.in

Indexing and Hashing

mailto:manaskhatua@iitj.ac.in

Why Indexing?

• Many queries reference only a small proportion of the records in a file
• It is inefficient to read every tuple in the relation to fetch the appropriate

tuples

• Ideally, the system should be able to locate these records directly.
• To allow these forms of access, we design additional structures that we

associate with files.

• Indexing mechanisms used to speed up access to desired data.
• Search Key – an attribute or set of attributes used to look up records in a file.
• An index file consists of records (called index entries) of the form:

• Index files are typically much smaller than the original file

• Two basic kinds of indices:
– Ordered indices: search keys are stored in sorted order
– Hash indices: search keys are distributed uniformly across “buckets” using a

“hash function”.

04-05-2018 2Dr. Manas Khatua

search-key pointer

Index Evaluation Metrics

04-05-2018 3Dr. Manas Khatua

• Access types: The types of access,
• E.g., records with a specified value in the attribute or records

with an attribute value falling in a specified range of values.

• Access time

• Insertion time

• Deletion time

• Space overhead: The additional space occupied by an index
structure

Ordered Indices
for

Index-Sequential File

04-05-2018 Dr. Manas Khatua 4

Ordered Indices

04-05-2018 Dr. Manas Khatua 5

• In an ordered index, index entries are stored sorted on the search key value.
– E.g., author catalog in library.

• Primary index: in a sequentially ordered file, the index whose search key
specifies the sequential order of the file.
– Also called clustering index
– The search key of a primary index is usually but not necessarily the primary key.

• Secondary index: an index whose search key specifies an order different from
the sequential order of the file.
– Also called non-clustering index.

• Index-sequential file: ordered sequential file with a primary index.

• There are two types of ordered indices
– Dense index
– Sparse index

Dense Index Files

• Dense index: Index record appears for every search-key value in the file.
– E.g. index on ID attribute of instructor relation

04-05-2018 Dr. Manas Khatua 6

Figure 11.2 Dense index.

Cont…

• Dense index on dept_name, with instructor file sorted on dept_name

04-05-2018 Dr. Manas Khatua 7

Sparse Index Files

• Sparse Index: contains index records for only some search-key values.
– Applicable when records are sequentially ordered on search-key

• To locate a record with search-key value K we:
– Find index record with largest search-key value < K
– Search file sequentially starting at the record to which the index record

points

04-05-2018 Dr. Manas Khatua 8

Cont…

04-05-2018 Dr. Manas Khatua 9

• Compared to Dense indices:
– Less space and less maintenance overhead for insertions and deletions.
– Generally slower than dense index for locating records.

• Good tradeoff: sparse index with an index entry for every block in file

Secondary Indices

• Index record (based on salary) points to a bucket that contains pointers to all
the actual records (w.r.t. search key) with that particular search-key value.

• Secondary indices must be dense

04-05-2018 Dr. Manas Khatua 10

Secondary index on salary field of instructor

Primary and Secondary Indices

• Indices offer substantial benefits when searching for records.

• But, updating indices imposes overhead on database modification --when a
file is modified, every index on the file must be updated,

• Sequential scan using primary index is efficient, but a sequential scan using a
secondary index is expensive as

– Each record access may fetch a new block from disk

– Block fetch requires about 5 to 10 milliseconds, versus about 100
nanoseconds for memory access

• Secondary indices improve the performance of queries that use keys other
than the search key of the clustering index (i.e. primary index)

04-05-2018 Dr. Manas Khatua 11

Cont…
• Suppose we build a dense index on a relation with 10,00,00,000 tuples
• Let us assume that 100 index entries fit on a 4 KB block.
• Thus, our index occupies 10,00,000 blocks = 4 GB !

• When the index is so large that not all of it can be kept in memory, index
blocks must be fetched from disk when required.

• The search for an entry in the index then requires several disk-block reads.

• Solution: Binary Search on Index
– Binary search can be used on the index file to locate an entry
– For a 10,000-block index, binary search requires 14 block reads.
– On a disk system where a block read takes on average 10 milliseconds, we would

be able to carry out only 7 index searches a second

– Note that if overflow blocks have been used for inserting Index, binary search is
not possible as the indices are not contiguous and are not in same block.

– In this case, sequential search is used.

04-05-2018 Dr. Manas Khatua 12

Multilevel Index

• When primary index does not fit in
memory, access becomes expensive.

• Solution: treat primary index kept on
disk as a sequential file and construct
a sparse index on it.

– outer index – a sparse index of
primary index

– inner index – the primary index file

• If even outer index is too large to fit in
main memory, yet another level of
index can be created, and so on.

• Indices at all levels must be updated
on insertion or deletion from the file.

04-05-2018 Dr. Manas Khatua 13

Index Update: Deletion

• Single-level index deletion:

– Dense indices – deletion of search-key is similar to file record deletion.

– Sparse indices –

• if an entry for the search key exists in the index, it is deleted by
replacing the entry in the index with the next search-key value in
the file (in search-key order).

• If the next search-key value already has an index entry, the entry is
deleted instead of being replaced.

04-05-2018 Dr. Manas Khatua 14

 If deleted record was the only
record in the file with its
particular search-key value,
the search-key is deleted from
the index also.

Index Update: Insertion

• Single-level index insertion:

– Perform a lookup using the search-key value appearing in the record to be
inserted.

– Dense indices – if the search-key value does not appear in the index,
insert it.

– Sparse indices – if index stores an entry for each block of the file, no
change needs to be made to the index unless a new block is created.

• If a new block is created, the first search-key value appearing in the
new block is inserted into the index.

• Multilevel insertion and deletion:

– algorithms are simple extensions of the single-level algorithms

04-05-2018 Dr. Manas Khatua 15

B+-Tree Indices
for

B+-Tree Index File

04-05-2018 Dr. Manas Khatua 16

B+-Tree Index Files

• Main disadvantage of the index-sequential file organization

– Performance degrades as the file grows
• both for index lookups and for sequential scans through the data

• This degradation can be remedied by reorganization of the file
• But, frequent reorganizations are undesirable

• Solution: B+-tree index structure
– B+-tree index takes the form of a balanced tree

– Each nonleaf node in an n-ary B+-tree has between [n/2] and n children

– But, imposes performance overhead on insertion and deletion,

– And, adds space overhead

– Advantage that the cost of file re-organization is avoided.

04-05-2018 Dr. Manas Khatua 17

Structure of a B+-Tree

• B+-tree index is a multilevel index, but it has a structure that differs
from that of the multilevel index-sequential file.

04-05-2018 Dr. Manas Khatua 18

• A simple B+-tree example

linking the keys 1-7 to data

values d1-d7.

• Tree is balanced.

• Keys are sorted

• The linked list (at leaf level)

allows rapid in-order traversal.

• This particular tree's branching

factor is 4.

Cont…
• Leaf Node:

– Each leaf can hold up to (n−1) values.
– Leaf nodes contain as few as ceiling[(n − 1)/2] values.
– The ranges of values in each leaf do not overlap, except if there are duplicate

search-key values

• Nonleaf Node
– form a multilevel (sparse) index on the leaf nodes
– nonleaf nodes is the same as that for leaf nodes, except that all pointers are

pointers to tree nodes
– A nonleaf node may hold up to n pointers, and must hold at least ceiling[n/2]

pointers
– The number of pointers in a node is called the fanout of the node.
– Nonleaf nodes are also referred to as internal nodes.

• Root Node
– Unlike other nonleaf nodes, the root node can hold fewer than n/2 pointers
– however, it must hold at least two pointers, unless the tree consists of only one

node.

04-05-2018 Dr. Manas Khatua 19

Cont…
• Let the search key is name of the instructor relation file;
• A leaf node is shown below

04-05-2018 Dr. Manas Khatua 20

B+-Tree for Instructor

04-05-2018 Dr. Manas Khatua 21

B+-tree for instructor file (n = 4)

Cont..

• The modified B+-Tree for Instructor when n=6

04-05-2018 Dr. Manas Khatua 22

• Observe that the height of this tree is less than that of the previous
tree, which had n = 4.

• B+-trees are all balanced i.e., the length of every path from the root
to a leaf node is the same

• the balance property ensures good performance for lookup,
insertion, and deletion.

B+-tree for instructor file (n = 6)

Queries on B+-Tree

• we wish to find records with a search-key value of V

• Starting with the root as the current node, the function repeats the
following steps until a leaf node is reached.

• The current node is examined, looking for the smallest i such that
search-key value Ki >= V.

– Suppose such value Ki is found; then
• if Ki == V, the current node is set to the node pointed to by Pi+1,
• otherwise Ki > V, and the current node is set to the node pointed to by Pi

– If no such value Ki is found, then
• clearly V > Km−1, where Pm is the last nonnull pointer in the node.
• the current node is set to that pointed to by Pm.

• The above procedure is repeated until a leaf node is reached.

04-05-2018 Dr. Manas Khatua 23

Cont…

• At the leaf node,
– let Ki be the first search-key == V

• pointer Pi directs us to a record with search-key value Ki .
• then returns the leaf node L and the index i.

– If not found
• no record with key value V exists in the relation
• return failure status

– If there is at most one record with a search key value V,
corresponding pointer retrieve the record and is done

– If there are more than one matching record, the remaining
records also need to be fetched

– How to find all other records with search-key value V?
• If node L contains at least one search-key value greater than V, then

there are no more records matching V.
• Otherwise, the next leaf, pointed to by Pn may contain further entries

for V. The node pointed to by Pn must then be searched.

04-05-2018 Dr. Manas Khatua 24

B+-Tree v/s Balanced Binary Search Tree

• In processing a query, we traverse a path in the tree from the root to some
leaf node.

• If there are N records in the file, the path is no longer than
• In practice, only a few nodes need to be accessed.
• Typically, a node is made to be the same size as a disk block, which is

typically 4 kilobytes

• With a search-key size of 32 bytes, and a disk-pointer size of 8 bytes, n is
around 100 in a B+-Tree.

• With n = 100, if we have 1 million search-key values in the file, a lookup
requires only log50(1,000,000) = 4 nodes to be accessed.

• Thus, at most 4 blocks need to be read from disk for the lookup.

• In a balanced binary tree, the path for a lookup can be of length
• In the previous example, a balanced binary tree requires around 20 node

accesses.

04-05-2018 Dr. Manas Khatua 25

Insertion into B+-Tree
• We first find the leaf node in which the search-key value would appear
• We then insert an entry (that is, a search-key value and record pointer pair) in the

leaf node, positioning it such that the search-keys are still in order.
• Maintain n-ary property using node splitting.

04-05-2018 Dr. Manas Khatua 26

Insert “Adams” Case1:

Splitting Leaf Node

Insertion into B+-Tree

• When an overfull nonleaf node is split, the child pointers are divided among the
original and the newly created nodes

• In the worst case, all nodes along the path to the root must be split. If the root itself
is split, the entire tree becomes deeper.

04-05-2018 Dr. Manas Khatua 27

Insert “Lamport”
Case2:

Splitting Nonleaf Node

Deletion from B+-Tree

• Deleting “Srinivasan” causes merging of under-full leaves as leaf node must
hold at least ceil(n-1/2) pointers. But “Wu” will have only one pointer.

• Borrow from sibling node is not possible in this case.

04-05-2018 Dr. Manas Khatua 28

Delete “Srinivasan”

Deletion from B+-Tree

• Leaf containing “Singh” and “Wu” became underfull, and borrowed a value
“Kim” from its left sibling

• Search-key value in the parent changes as a result

04-05-2018 Dr. Manas Khatua 29

Deletion of “Singh” and “Wu”

Deletion from B+-Tree

• Leaf Node with “Gold, Katz” became underfull, and was merged with its sibling

• Parent node becomes underfull, and is merged with its sibling

– Value separating two nodes (at the parent) is pulled down when merging

• Root node then has only one child, and is deleted

04-05-2018 Dr. Manas Khatua 30

Deletion of “Gold”
Katz

B+-Tree File Organization
• The main drawback of index-sequential file organization is the degradation of

performance as the file grows
– With growth, an increasing percentage of index entries
– and actual records become out of order,
– and are stored in overflow blocks.

• We solve the degradation of index lookups by using B+-tree indices on the file.
• We solve the degradation problem for storing the actual records by using the leaf

level of the B+-tree to organize the blocks containing the actual records.
• We use the B+-tree structure not only as an index, but also as an organizer for records

in a file.

• In a B+-tree file organization, the leaf nodes of the tree store records, instead of
storing pointers to records.

• Since records are usually larger than pointers, the maximum number of records that
can be stored in a leaf node is less than the number of pointers in a nonleaf node.

• Insertion and deletion of records from a B+-tree file organization are handled in the
same way as insertion and deletion of entries in a B+-tree index.

04-05-2018 Dr. Manas Khatua 31

Cont…

• Good space utilization is important since records use more space than pointers.

04-05-2018 Dr. Manas Khatua 32

Example of B+-tree File Organization

Hash Indexing
Hash File Organization

04-05-2018 Dr. Manas Khatua 33

Static Hashing

• The main drawback of sequential file organization is that
– we must access an index structure to locate data,
– or must use binary search,
– that results in more I/O operations.

• File organizations based on the technique of hashing allow us to avoid
accessing an index structure.

• Hashing also provides a way of constructing indices.

• We shall use the term bucket to denote a unit of storage that can
store one or more records.

• A bucket is typically a disk block.

• Formally, let K denote the set of all search-key values, and let B
denote the set of all bucket addresses.

• A hash function h is a function from K to B.

04-05-2018 Dr. Manas Khatua 34

Example

Hash file organization of instructor file, using dept_name as key

04-05-2018 Dr. Manas Khatua 35

Hash Function

• Hashing can be used for two different purposes:
– hash file organization

• obtain the address of the disk block containing a desired record directly by
computing a function on the search-key value of the record.

– hash index organization
• organize the search keys, with their associated pointers, into a hash file structure.

• Good hash function: distributes search-key values to buckets
effectively, which means
– The distribution is uniform

• the hash function assigns each bucket the same number of search-key values
from the set of all possible search-key values.

– The distribution is random
• the hash value will not be correlated to any externally visible ordering on the

search-key values, such as alphabetic ordering or ordering by the length of the
search keys

04-05-2018 Dr. Manas Khatua 36

Example

• Case 1:
– Let a hash function for the instructor file using the search key dept_name.
– Assume that we decide to have 26 buckets, and we define a hash function

that maps names beginning with the i-th letter of the alphabet to the i-th
bucket.

– it fails to provide a uniform distribution, since we expect more names to
begin with such letters as B and R than Q and X, for example. It is not
random as well.

• Case 2:
– suppose that we want a hash function on the search key salary.
– we use a hash function that divides the values into 10 ranges, say $30,000–

$40,000, $40,001–$50,000 and so on.

– The distribution of search-key values is uniform (since each bucket has the
same number of different salary values), but is not random (since salaries
between $60,001 and $70,000 are far more common than the remaining),
and the distribution of records is not uniform

04-05-2018 Dr. Manas Khatua 37

Handling of Bucket Overflows
• Hence, hash functions require careful design.

– A bad hash function may result in lookup taking time proportional to the number
of search keys in the file.

– A well designed function gives an average-case lookup time that is a (small)
constant, independent of the number of search keys in the file.

• If the mapped bucket does not have enough space, a bucket overflow occurs.
– Insufficient buckets

• The number of buckets (nB) must be chosen such that nB > (nr / fr),
• nr denotes the total number of records that will be stored and
• fr denotes the number of records that will fit in a bucket.

– Skew
• Some buckets are assigned more records than are others, so a bucket may overflow even

when other buckets still have space.
• Reasons: (1) Multiple records may have the same search key. (2) The chosen hash function

may result in nonuniform distribution of search keys.

• Despite allocation of a few more buckets than required, bucket overflow can
still occur. We handle bucket overflow by using overflow buckets.

• All the overflow buckets of a given bucket are chained together in a linked list,
called overflow chaining.

04-05-2018 Dr. Manas Khatua 38

Open and Closed Hashing

• Closed Hashing:
– the set of buckets is not fixed;
– allows overflow chaining
– Application: in database systems; as

deletion under open hashing is
troublesome

• Open hashing:
– the set of buckets is fixed;
– there are no overflow chains;
– One solution: linear probing - use

the next bucket (in cyclic order) that
has space

– Other Solution: Rehashing

• Application: used to construct
symbol tables for compilers and
assemblers

04-05-2018 Dr. Manas Khatua 39

Hash Indices

• Hashing can be
used not only for
file organization,
but also for index-
structure creation.

• A hash index
organizes the
search keys, with
their associated
record pointers,
into a hash file
structure.

• Strictly speaking,
hash indices are
always secondary
indices

04-05-2018 Dr. Manas Khatua 40

Hash index on instructor relation,

on attribute ID

Deficiencies of Static Hashing

• In static hashing,
– We must choose the hash function when we implement the system, and

it cannot be changed easily thereafter
– Function h maps search-key values to a fixed set of B of bucket addresses.
– However, databases grow or shrink with time.

• If initial number of buckets is too small, and file grows, performance will degrade
due to too much overflows.

• If space is allocated for anticipated growth, a significant amount of space will be
wasted initially (and buckets will be underfull).

• If database shrinks, again space will be wasted.

• One solution: periodic re-organization of the file with a new hash
function
– Expensive, disrupts normal operations

• Better solution: allow the number of buckets to be modified
dynamically (i.e. dynamic hashing)

04-05-2018 Dr. Manas Khatua 41

Dynamic Hashing
• Good for database that grows and shrinks in size
• Allows the hash function to be modified dynamically

• Two popular forms of dynamic hashing
– Extendable hashing
– Linear hashing

• Extendable hashing
– Hash function generates values over a large range — typically b-bit

integers, with b = 32.
– At any time use only a prefix of the hash function to index into a table of

bucket addresses.

– Let the length of the prefix be i bits, 0  i  32.
• Bucket address table size = 2i ; Initially i = 0
• Value of i grows and shrinks as the size of the database grows and shrinks.

– Multiple entries in the bucket address table may point to a bucket (why?)
– Thus, actual number of buckets is < 2i

• The number of buckets also changes dynamically due to coalescing and splitting of
buckets.

04-05-2018 Dr. Manas Khatua 42

Extendable Hash Structure

04-05-2018 Dr. Manas Khatua 43

• In this structure, i2 = i3 = i ; whereas i1 = i – 1
• do not create a bucket for each hash value

Example: for Extendable Hashing

• Operations:
– Queries: To locate the bucket containing search-key value Kl , the system

takes the first i high-order bits of h(Kl), looks at the corresponding table
entry for this bit string, and follows the bucket pointer in the table entry.

– Insertion
– Deletion

04-05-2018 Dr. Manas Khatua 44

Hash function for dept_name.

Extendable Hashing: Insertion

• Hash structure after insertion of “Mozart”, “Srinivasan”, and “Wu” records
• Splitting of record bucket is required

04-05-2018 Dr. Manas Khatua 45

• Initial Hash structure; Let the allowed bucket size = 2

Extendable Hashing: Insertion

04-05-2018 Dr. Manas Khatua 46

• Hash structure after insertion of “Einstein” record

• Again, Splitting is required

Extendable Hashing: Insertion

• Hash structure after insertion of “Gold” and “El Said” records

04-05-2018 Dr. Manas Khatua 47

Extendable Hashing: Insertion

• Hash structure after insertion of “Katz” record

04-05-2018 Dr. Manas Khatua 48

Extendable Hashing: Insertion

• After the insertion
of “Crick”, “Singh”,
“Califieri”, “Brandt”

• Overflow bucket is
required

04-05-2018 Dr. Manas Khatua 49

Extendable Hashing: Insertion

• After the insertion of
“Kim”

04-05-2018 Dr. Manas Khatua 50

Extendable Hashing: Insertion Rule

To split a bucket j when inserting record with search-key value Kj:

• If i > ij (more than one pointer to bucket j)
– allocate a new bucket z, and set ij = iz = (ij + 1)
– Update the second half of the bucket address table entries originally

pointing to j, to point to z
– remove each record in bucket j and re-insert (in j or z)
– re-compute new bucket for Kj and insert record in the bucket

(further splitting is required if the bucket is still full)

• If i = ij (only one pointer to bucket j)
– If i reaches some limit b, or too many splits have happened in this

insertion, create an overflow bucket
– Else

• increment i and double the size of the bucket address table.
• replace each entry in the table by two entries that point to the same

bucket.
• re-compute new bucket address table entry for Kj

Now i > ij so use the first case above.

04-05-2018 Dr. Manas Khatua 51

Extendable Hashing: Deletion Rule

• To delete a key value,
– locate it in its bucket and remove it.

– The bucket itself can be removed if it becomes empty (with
appropriate updates to the bucket address table).

– Coalescing of buckets can be done (can coalesce only with a “buddy”
bucket having same value of ij and same ij –1 prefix, if it is present)

– Decreasing bucket address table size is also possible
• Note: decreasing bucket address table size is an expensive operation and

should be done only if number of buckets becomes much smaller than the
size of the table

04-05-2018 Dr. Manas Khatua 52

Performance Analysis
• Benefits of extendable hashing:

– Hash performance does not degrade with growth of file

– Minimal space overhead

• Disadvantages of extendable hashing

– Extra level of indirection to find desired record

– Bucket address table may itself become very big (larger than memory)

• Cannot allocate very large contiguous areas on disk either

• Solution: B+-tree structure to locate desired record in bucket
address table

– Changing size of bucket address table is an expensive operation

• In practice:

– Oracle supports static hash organization, but not hash indices

– SQLServer supports only B+-trees

04-05-2018 Dr. Manas Khatua 53

04-05-2018 54Dr. Manas Khatua

