
CS348: Computer Networks

Dr. Manas Khatua

Assistant Professor

Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

Socket Programming

mailto:manaskhatua@iitg.ac.in


Socket Programming
Goal: Learn how to build client-server application

that communicate using sockets

• typical network application consists of 
– a client program and a server program
– Those programs resides in two different end systems.

• There are two types of network applications
– Open, i.e. operation rules are known to all and published as RFC

• Two different organizations can develop two programs -- client and server

– Proprietary, i.e. operation rules has not been published
• One organization must develop both the programs  -- client and server
• Other independent developers will not be able to develop code that interoperates with this 

application

• Developer decides - whether the application is to run over TCP or UDP

• Proprietary should not use well known port for their applications

22-01-2020 Dr. Manas Khatua 2



Socket API

22-01-2020 Dr. Manas Khatua 3

a host-local, 
application-created, 

OS-controlled interface (a 
“door”) into which

application process can both 
send and receive

messages to/from another 
application process

socketSocket API

• introduced in BSD4.1 UNIX, 1981

• explicitly created, used, released by apps 

• client/server paradigm 

• two types of transport service via socket API: 

– unreliable datagram (use UDP)

– reliable, byte stream-oriented (use TCP)

process

TCP/UDP
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host

process

TCP/UDP
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host

internet



Types of Internet Sockets

• Stream Sockets (SOCK_STREAM)
– Connection oriented
– Rely on TCP to provide reliable two-way connected communication

• Datagram Sockets (SOCK_DGRAM)
– Rely on UDP
– Connection is unreliable

22-01-2020 Dr. Manas Khatua 4



Socket Programming
• Application developer has

– control of everything on the application-layer side of the socket; 
– But, it has little control of the transport-layer side.

• When a socket is created, an identifier, called a port number, is assigned to it.

• The sending process attaches to the packet 
– a destination address which consists of the destination host’s IP address and 
– the destination socket’s port number.

• These are also attached to the packet
– The sender’s address consisting of the IP address of the source host,
– the port number of the source socket

Let a simple client-server application
1. The client reads a line of characters (data) from its keyboard and sends the data to the server.
2. The server receives the data and converts the characters to uppercase.
3. The server sends the modified data to the client.
4. The client receives the modified data and displays the line on its screen.

22-01-2020 Dr. Manas Khatua 5



Socket programming with UDP

22-01-2020 Dr. Manas Khatua 6

UDP: no “connection” between 
client and server

• no handshaking

• Sender (i.e., client) explicitly 
attaches IP address and port of 
destination to each packet

• server must extract IP address, 
port of sender from received 
packet

UDP: transmitted data may be 
received out of order, or lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server



Client/Server socket interaction: UDP

22-01-2020 Dr. Manas Khatua 7

Server (running on serverIP)

Close

clientSocket

Read datagram from

clientSocket

Create socket,

clientSocket = 

socket(AF_INET, SOCK_DGRAM)

Client

Create datagram 

with serverIP and port=x; 

send datagram via

clientSocket

Create socket,

port= x.

serverSocket = 

socket(AF_INET, SOCK_DGRAM)

read datagram from

serverSocket

Write reply to

serverSocket

specifying 

client address, port number



Socket Programming (in Python)
• UDPClient.py

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message,(serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print modifiedMessage
clientSocket.close()

22-01-2020 Dr. Manas Khatua 8

• UDPServer.py

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind((’’, serverPort))
print ”The server is ready to receive”
while 1:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.upper()
serverSocket.sendto(modifiedMessage, clientAddress)



UDPClient.py
from socket import *

• Invoke socket library; will be able to create sockets within our program

serverName = ‘hostname’ ;    serverPort = 12000
• sets the IP address of the server (e.g., “128.138.32.126”) OR 
• sets the hostname of the server (e.g., “cis.poly.edu”).
• sets the integer variable serverPort to 12000.

clientSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)
• creates the client’s socket
• Family: defines the address family (AF). The common values are AF_INET (for IPv4),
• Type: defines four types of sockets

• SOCK_STREAM (for TCP);         SOCK_DGRAM (for UDP),
• SOCK_SEQPACKET (for SCTP);      SOCK_RAW (for directly use the IP)

• Note: we are not specifying the port number of the client socket when we create it; we are instead 
letting the operating system do this for us.

clientSocket.bind((‘’, 19157))
• associate a port number (say, 19157) to this UDP client socket. bind() is implicitly called by socket()

message = raw_input(’Input lowercase sentence:’)
• It is a built-in function used to take inputs from the user using keyboard.

22-01-2020 Dr. Manas Khatua 9



Cont…
clientSocket.sendto(message, (serverName, serverPort))

• attaches the destination address (serverName, serverPort) to the message, and 
• sends the resulting packet into the process’s socket, clientSocket.

• After sending the packet, the client waits to receive data from the server.

modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
• when a packet arrives from the Internet at the client’s socket :
• the packet’s data is put into the variable modifiedMessage, and 
• the packet’s source address is put into the variable serverAddress.
• method recvfrom also takes the buffer size 2048 as input

print modifiedMessage
• prints out modifiedMessage on the user’s display
• Note: It should be the original line that the user typed, but now capitalized by the 

server

clientSocket.close()
• This line closes the socket. The process then terminates. 

22-01-2020 Dr. Manas Khatua 10



UDPServer.py

from socket import *
• Invoke socket library; will be able to create sockets within our program

serverPort = 12000
• sets the integer variable serverPort to 12000.

serverSocket = socket(socket.AF_INET, socket.SOCK_DGRAM)
• creates the server’s socket

serverSocket.bind((’’, serverPort))
• The above line binds (i.e., assigns) the port number 12000 to the server’s 

socket.

print ”The server is ready to receive”
while 1:

• UDPServer is ready and waits for a packet to arrive.

22-01-2020 Dr. Manas Khatua 11



Cont…

message, clientAddress = serverSocket.recvfrom(2048)
• This line is similar to what we saw in UDPClient. 
• UDPServer will make use of this address information (clientAddress)

modifiedMessage = message.upper()
• use the method upper() to capitalize it.

serverSocket.sendto(modifiedMessage, clientAddress)
• attaches the client’s address (IP address and port number) to the capitalized 

message,
• sends the resulting packet into the server’s socket (serverSocket)

• After the server sends the packet, it remains in the while loop, waiting for another 
UDP packet to arrive

22-01-2020 Dr. Manas Khatua 12



Socket Programming with TCP

22-01-2020 Dr. Manas Khatua 13

Client must contact server

• server process must first be 
running

• server must have created 
socket (door) that welcomes 
client’s contact

Client contacts Server by:

• creating client-local TCP socket

• specifying IP address, port 
number of server process

• When client creates socket: 
client TCP establishes 
connection to server TCP

• When contacted by client, server 
TCP creates new socket for 
server process to communicate 
with client

– allows server to talk with 
multiple clients

– source port numbers used to 
distinguish clients 

TCP provides reliable, in-order
transfer of bytes (“pipe”) 
between client and server

application viewpoint



Client/Server socket interaction: TCP

22-01-2020 Dr. Manas Khatua 14

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

Create socket, port=x, 

for incoming request:

serverSocket = socket()

Create socket,

connect to serverIP, port=x

clientSocket = socket()

Close

connectionSocket

Read reply from

clientSocket

close

clientSocket

Server (running on serverIP) Client

Send request using

clientSocketRead request from

connectionSocket

Write reply to

connectionSocket

TCP 
connection setup



Cont…
• Unlike UDP, TCP is a connection-

oriented protocol
– before the client and server can start 

to send data to each other, they first 
need to handshake and establish a 
TCP connection.

– When creating the TCP connection, 
• we associate with it the client socket 

address and server socket address 

– After TCP connection is established,  
• it just drops the data into the TCP 

connection via its socket.

• This is different from UDP, for which the 
server must attach a destination address 
to the packet before dropping it into the 
socket.

• The client has the job of initiating 
contact with the server.

22-01-2020 Dr. Manas Khatua 15



Socket Programming (in Python)
• TCPClient.py

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘Input lowercase sentence:’)

clientSocket.send(sentence)

modifiedSentence = clientSocket.recv(1024)

print ‘From Server:’, modifiedSentence

clientSocket.close()

22-01-2020 Dr. Manas Khatua 16

• TCPServer.py

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print ‘The server is ready to receive’

while 1:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024)

capitalizedSentence = sentence.upper()

connectionSocket.send(capitalizedSentence)

connectionSocket.close()



Cont…
• Lines of code that differ significantly from the UDP implementation

clientSocket = socket(AF_INET, SOCK_STREAM)
• The second parameter indicates that the socket is of type SOCK_STREAM, 

which means it is a TCP socket

clientSocket.connect((serverName,serverPort))
• a TCP connection must first be established between the client and server.

clientSocket.send(sentence)
• sends the string sentence through the client’s socket and into the TCP 

connection.
• Note: this is not packet, and did not attach the destination address to the 

packet

clientSocket.close()
• closes the socket, and, hence, closes the TCP connection

22-01-2020 Dr. Manas Khatua 17



Cont…
serverSocket.bind((‘’,serverPort))

• with TCP, serverSocket will be our welcoming socket.
• we will wait and listen for some client to knock on the door.

serverSocket.listen(1)
• server listen for TCP connection requests from the client.
• The parameter of listen() specifies the maximum number of queued connections 

(at least 1)

connectionSocket, addr = serverSocket.accept()
• When a client knocks on this door, the program invokes the accept() method for 

serverSocket, which creates a new socket in the server, called connectionSocket, 
dedicated to this particular client 

• The client and server then complete the handshaking, creating a TCP connection 
between the client’s clientSocket and the server’s connectionSocket.

connectionSocket.close()
• after sending the modified sentence to the client, we close the connection socket.
• But serverSocket remains open, another client can now knock on the door

22-01-2020 Dr. Manas Khatua 18



22-01-2020 19Dr. Manas Khatua


