
CS348: Computer Networks

Dr. Manas Khatua
Asst. Professor

Dept. of CSE, IIT Guwahati
E-mail: manaskhatua@iitg.ac.in

Transport Layer Introduction,
UDP

mailto:manaskhatua@iitg.ac.in

Transport Layer

15-02-2019 Dr. Manas Khatua 2

Goals:
 understand principles

behind transport layer
services:

 multiplexing,
demultiplexing

 reliable data transfer

 flow control

 congestion control

 learn about Internet
transport layer
protocols:

 UDP: connectionless
transport

 TCP: connection-oriented
reliable transport

 TCP congestion control

Transport service

15-02-2019 3Dr. Manas Khatua

 provide logical
communication between
application processes
running on different hosts

 transport protocols run in
end systems

 send side: breaks
app messages
into segments,
passes to
network layer

 rcv side:
reassembles
segments into
messages, passes
to app layer

Cont…
• In TCP/IP suite, it provides services to the Application layer and receives

services from the Network layer.

• General transport services Network v/s Transport Layers
– process-to-process connection
– logical addressing
– multiplexing and de-multiplexing
– reliable delivery
– flow and congestion control

• Transport-Layer Protocol strategies
– Stop-and-Wait
– Go-back-N
– Selective-Repeat

• Transport-Layer Protocols for the Internet
– Connection less protocol: UDP
– Connection oriented protocol : TCP

15-02-2019 4Dr. Manas Khatua

 Network layer provides
logical communication
between two hosts
located in two different
networks

 IP service model: best-
effort delivery but
unreliable service

 Network layer protocols
are also implemented in
network routers

Process-to-Process Communication

15-02-2019 5Dr. Manas Khatua

• One architecture for process-to-process communication: client-server approach

• Host is identified by IP address
• Process is identified by port number

• TCP/IP supports port numbers 0-65535 (16 bits)
– Client uses: ephemeral ports (short-lived ports, >1023)
– Server Uses: well-known ports in general

Logical Addressing
• Internet Corporation for Assigned Names and Numbers (ICANN)

• Example:
– ports are stored in /etc/services
– FTP : 20, 21
– SSH, SCP : 22
– Echo : 7
– DNS : 53
– HTTP : 80
– SNMP : 161,162
– BGP : 179

15-02-2019 Dr. Manas Khatua 6

Private port numbers are available
for use by any application to use in
communicating with any other
application, using the Internet's TCP
or UDP.

Companies and other users should
register Registered port number with
the ICANN for use by their
applications.

Socket Address

• To use the services of the transport layer in the Internet,
– we need a pair of socket addresses:

• the client socket address

• the server socket address

15-02-2019 Dr. Manas Khatua 7

Multiplexing / Demultiplexing

15-02-2019 8Dr. Manas Khatua

• Suppose you are sitting in
front of a computer, and
you are browsing Web
pages while running one
FTP session and Telnet
sessions.

• So, 3 processes
– HTTP
– FTP
– Telnet

• How does a segment
forwarded to intended
process?
– using Socket Address
– Method: multiplexing /

demultiplexing

Cont…

15-02-2019 9Dr. Manas Khatua

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

Connection-less De-multiplexing

15-02-2019 10Dr. Manas Khatua

 created socket has host-
local port #:

clientSocket.bind(‘’, 19157)

 when creating datagram to
send into UDP socket, must
specify
 destination IP address

 destination port #

clientSocket.sendto(message,
(serverName, serverPort))

 when host receives UDP
segment:
 checks destination port # in

segment

 directs UDP segment to socket
with that port #

IP datagrams with same
dest. port #, but different
source IP addresses (i.e.
host) and/or source port
numbers (i.e. process) will
be directed to same socket
at destination.

Connection-less demux example

15-02-2019 Dr. Manas Khatua 11

serverSocket =
socket(AF_INET,
SOCK_DGRAM);

serverSocket.bind
(‘’,6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

clientSocket =
socket(AF_INET,
SOCK_DGRAM);

clientSocket.bind
(‘’,5775);

clientSocket =
socket(AF_INET,
SOCK_DGRAM);

clientSocket.bind
(‘’,9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: 6428
dest port: 5775

source port: 5775
dest port: 6428

Connection-oriented demux example

15-02-2019 Dr. Manas Khatua 12

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host:
IP add. A

host:
IP add. C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets (created for data transfer)

Note: TCP socket identified by 4-tuple: source IP & port#, dest. IP & port#

server:
IP add. B

UDP: User Datagram Protocol [RFC 768]

 UDP use:
 streaming multimedia

apps (loss tolerant,
rate sensitive)

 DNS
 SNMP
 DHCP

 Reliable transfer
over UDP
 add reliability at

application layer
 application-specific

error recovery!

15-02-2019 13Dr. Manas Khatua

• “no-frills,” “bare-bones”
Internet transport protocol

• “best effort” service, UDP
segments may be:
– lost
– delivered out-of-order to

the destination

• connectionless:
– no handshaking between

UDP sender, receiver
– each UDP segment

handled independently of
others

UDP segment structure

15-02-2019 14Dr. Manas Khatua

Length (in bytes) of UDP
segment, including header

 no connection establishment
(which can add delay)

 no connection state at sender,
receiver

 small header size

 no congestion control: UDP can
blast away as fast as desired

 Finer application-level control
over what data is sent, and when

why is there a UDP?

UDP Services

15-02-2019 15Dr. Manas Khatua

• Process-to-process communication
– Need socket address (IP + Port)

• Connectionless service
– No sequence number
– So, no relation between UDP datagrams

– No connection establishment
– So, datagram can travel through different path

– No segmentation (message size < (65535 - 8))

• Multiplexing / Demultiplexing
– One UDP, but several process in application layer wants to use its services

• No flow control
– No window mechanism

• No error control
– Error detection through

checksum, but no control

• No congestion control
– Assumption is that

congestion will not occur
as UDP datagrams are
small in size

• Queuing
– Queues are associated

with port

Applications using UDP

15-02-2019 16Dr. Manas Khatua

UDP Checksum

15-02-2019 17Dr. Manas Khatua

• It is optional
• It considers three parts:

– Pseudo header
• fields from IP header: source IP, dest. IP,

upper layer protocol, datagram length

– UDP header
– data (from application layer)

• Datalink layer has error detection
mechanism.

• Why do we need checksum in transport
layer?
– using Link layer error detection (i.e. by

CRC) neither link-by-link reliability nor
in-memory (in intermediate
node/device) error detection is
guaranteed w.r.t. end-to-end service

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

• What is pseudoheader?
– contains some information from the

real IPv4 header.

– it is not the real IPv4 header used to
send an IP packet

• Why do we need pseudoheader?
– Socket-address needs to be

uncorrupted.
• a user datagram may arrive safe and

sound. However, if the IP header is
corrupted, it may be delivered to the
wrong host!

– to ensure that the packet belongs to
UDP, and not to TCP

Cont…

15-02-2019 18Dr. Manas Khatua

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

sender:
• treat segment contents,

including header fields, as
sequence of 16-bit integers

• checksum: addition (one’s
complement sum) of
segment contents

• sender puts checksum value
into UDP checksum field

receiver:
• compute checksum of

received segment

• check if computed checksum
equals checksum field value:
– NO - error detected

– YES - no error detected.

Cont…

example: add two 16-bit integers

15-02-2019 19Dr. Manas Khatua

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs
to be added to the result

Note: UDP at the sender side performs the 1’s complement of the sum of all
the16-bit words in the segment, and the result is put in the checksum field

Cont…

• What value is sent for the
checksum in each one of the
following cases?

– Case1: The sender
decides not to include
the checksum.

– Case2: the value of the
sum is all 1s.

– Case3: the value of the
sum is all 0s.

15-02-2019 20Dr. Manas Khatua

• Solutions:

• Case1:

– All 0s

• Case2:

– When the sender complements the sum, the result is all
0s; the sender complements the result again before
sending. The value sent for the checksum is all 1s.

– The second complement operation is needed to avoid
confusion with the previous case.

– Note that this does not create confusion because the
value of the checksum is never all 1s in a normal
situation

• Case3:

– This situation never happens because it implies that the
value of every term included in the calculation of the
sum is all 0s, which is impossible.

Application Types uses UDP

15-02-2019 21Dr. Manas Khatua

• If the request and response can
each fit in a single user datagram, a
connectionless service may be
preferable.
• e.g. DNS request and response;
• but, not suitable in SMTP as e-mail

size could be large

• Lack of error control is
advantageous sometimes
• e.g. real-time communication

through Skype, Voice over IP,
online games, live streaming

• but, not suitable for file download,
Video-On-demand

• Lack of congestion control
• Advantageous in error-prone

network

• It is simple
• suitable for bootstrapping or

other purposes without a full
protocol stack,

• e.g., the DHCP

• It is stateless
• suitable for very large numbers

of clients, such as in streaming
media applications such as
IPTv.

• It works well in unidirectional
communication
• suitable for broadcast

information
• e.g, many kinds of service

discovery

15-02-2019 22Dr. Manas Khatua

Content of this PPT are taken from:

1) Computer Networks: A Top Down Approach, by J.F. Kuros and K.W.
Ross, 6th Eds, 2013, Pearson Education.

2) Data Communications and Networking, by B. A. Forouzan , 5th Eds,
2012, McGraw-Hill.

3) Chapter 3 : Transport Layer, PowerPoint slides of “Computer
Networking: A Top Down Approach“, 6th Eds, J.F. Kurose, K.W. Ross

