
CS348: Computer Networks

Dr. Manas Khatua
Assistant Professor

Dept. of CSE, IIT Guwahati
E-mail: manaskhatua@iitg.ac.in

TCP Introduction

mailto:manaskhatua@iitg.ac.in

TCP: Overview

15-02-2019 Dr. Manas Khatua 2

• pipelined:
 TCP congestion and flow

control set window size

• flow controlled:
 sender will not

overwhelm the receiver

• full duplex data:
 bi-directional data flow in

same connection
 MSS: maximum segment

size (max amount of app.
layer data in a segment)

• connection-oriented:
 handshaking (exchange of control

msgs)
 initialize sender, receiver state

before data exchange

 TCP connection is not end-to-end
TDM/FDM circuit or virtual circuit
(as only end systems maintain
connection state)

• point-to-point:
 one sender, one receiver

• reliable, in-order, byte steam:
 error and loss control
 no “message boundaries”

TCP segment structure

15-02-2019 Dr. Manas Khatua 3

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

URG data pointerchecksum

FSRPAU
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK # valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

Counting by

bytes of data

(not segments!)

Internet checksum

(as in UDP)

TCP - Stream Delivery Service

• Each TCP endpoint has its own sending and receiving buffer

• Sending and Receiving buffer may not necessarily write / read data at the same rate

15-02-2019 Dr. Manas Khatua 4

Cont…

• Segmentation and Reassembly
– TCP usually determines the maximum segment size (MSS) based on the MTU of

Layer 3 (IP layer).
– Note: for UDP, the assumption was that the UDP segments are small in size

• No segment number in TCP. But, TCP uses SEQ and ACK numbers
– These are byte numbers, but not segment numbers

• Number is independent in each direction
• For 1st byte: arbitrary number in [0, 232- 1], as TCP uses 32-bit seq#

15-02-2019 Dr. Manas Khatua 5

TCP Seq #, ACK #

15-02-2019 Dr. Manas Khatua 6

sequence numbers:

• byte stream “number”
of first byte in segment’s
data

acknowledgements:

• seq # of next byte
expected from other
side

• cumulative ACK

Q: how receiver handles out-of-order
segments

• Ans: TCP spec doesn’t say!
-- up to implementer

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Cont…

• ACK in TCP can be described as a hybrid of GBN and SR

• TCP is similar to GBN because both protocols have a limit on the number of unACK'd
packets that the sender can send into the network.

• However, TCP is different from GBN because GBN requires the retransmission of
every unACK'd packet when packets are lost, but TCP only retransmits the oldest
unACK'd one.

• TCP is similar to SR because, when packets are lost due to congestion, the protocols
do not require the sender to retransmit EVERY unACK'd packet sent by the sender.
The sender just retransmits the oldest unACK'd packet.

• TCP is different from SR because SR requires individual acknowledgement of each
packet that was sent by the receiver; but rather than selectively ACKing every
packet, TCP sends an ACK for the next packet that it is expecting and buffers the
ones that it has received so far, even if they're out of order

15-02-2019 Dr. Manas Khatua 7

Cont…

15-02-2019 Dr. Manas Khatua 8

• 1st seg. SEQ#=0
• 2nd seg. SEQ#=1000
• 3rd seg. SEQ#=2000
• So on.

User
data‘C’

host ACKs
receipt of

echoed ‘C’

host ACKs
receipt of ‘C’,
echoes back ‘C’

simple
telnet

scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

TCP Connection

15-02-2019 Dr. Manas Khatua 9

• TCP is connection-oriented (although IP is connectionless)
• TCP connection is logical, not physical.

• TCP operates in full-duplex mode
• TCP uses three-way-handshaking

– SYN
– ACK+SYN
– ACK

• Let, an application program (i.e. client) wants to make a connection with
another application program (i.e. server) using TCP

• The process starts with the server.
– Passive open (server process informs transport layer of the server that it is ready)
– Active open (client process issues request to client transport layer)
– Now client transport layer starts three-way-handshaking

Connection Creation

15-02-2019 Dr. Manas Khatua 10

• ACK and SYN flags are used

Data Transfer

15-02-2019 Dr. Manas Khatua 11

ACK and/or PSH
flags are used

Connection Termination

15-02-2019 Dr. Manas Khatua 12

• ACK and FIN flags are used

Half-close Connection

15-02-2019 Dr. Manas Khatua 13

Example:
Sorting at server

Full Scenario

15-02-2019 Dr. Manas Khatua 14

Create Connection

Data Transfer
in both direction

Half-close

Receive Response

Close other half

Closed status

PSH, RST, URG flags

15-02-2019 Dr. Manas Khatua 15

• PUSH (PSH) flag
– means sending TCP must not wait for the window to be filled, and then send the

segment
– informs the receiving TCP to deliver the received segment immediately to

application program

• RESET (RST) flag
– means it is telling the sender “I don’t have socket for that segment. Please don’t

resend the segment”
– It is required when a host receives TCP SYN segment with a destination port (say

80) but the destination is not accepting any connection on that port (may be Web
server is not running at port 80)

• URGENT (URG) flag
– when this bit is set, the Urgent Pointer is also set (in the TCP header Options field:

16 bit).
– URG pointer tell how many bytes of the data is urgent in the segment that has

arrived.
– Example:

• if the data size is 100 bytes and only first 50 bytes is urgent, the urgent pointer will have a
value of 50

RTT Estimation & Timeout in TCP

15-02-2019 Dr. Manas Khatua 16

• TCP uses a timeout/retransmit mechanism to recover from lost segments.

• The timeout should be larger than the connection’s round-trip time (RTT)

• Q: How should the RTT be estimated in the first place?
• Q: Should a timer be associated with each and every unACKed segment?

• The base RTT (SampleRTT) for a segment is
• the amount of time between the timestamps when the segment is sent and when an ACK for the

segment is received.

• But, the SampleRTT values will fluctuate from segment to segment due to
– congestion in the routers,
– varying load on the end systems.

• Solution:
• TCP maintains an average of the SampleRTT values (called EstimatedRTT)
• Exponentially weighted moving average (EWMA)

EstimatedRTT = (1 – α) . EstimatedRTT + α . SampleRTT
The recommended value of α is = 1/8

Cont…

15-02-2019 Dr. Manas Khatua 17

• It is also valuable to have a measure of the variability of the RTT.

DevRTT = (1 – β) . DevRTT + β . | SampleRTT – EstimatedRTT | The recommended value of β is 1/4.

• So, the DevRTT will be

– Small for little fluctuation

– Large for lot of fluctuation

• It is desirable to set, Timeout = EstimatedRTT + some margin.

• The margin should be

– large when there is a lot of fluctuation in the SampleRTT values;

– small when there is little fluctuation in the SampleRTT values

So, Timeout_Interval = EstimatedRTT + 4 . DevRTT

• Question: How long the receiver waits before sending a stand-alone ACK to acknowledge data?

– Delayed ACK was invented to reduce the number of ACKs required to acknowledge the segments

– A host may delay sending an ACK response by up to 500 ms.

– However, a stand-alone ACK is sent if 2 packets of data arrive before the delayed ACK timer expires.

TCP Applications

• Major Internet applications rely on TCP

– World Wide Web (HTTP)

– E-mail (SMTP, IMAP, POP)

– File Transfer Protocol (FTP)

– Secure Shell (SSH)

– Telnet

15-02-2019 Dr. Manas Khatua 18

15-02-2019 19Dr. Manas Khatua

Content of this PPT are taken from:

1) Computer Networks: A Top Down Approach, by J.F. Kuros and K.W.
Ross, 6th Eds, 2013, Pearson Education.

2) Data Communications and Networking, by B. A. Forouzan , 5th Eds,
2012, McGraw-Hill.

3) Chapter 3 : Transport Layer, PowerPoint slides of “Computer
Networking: A Top Down Approach“, 6th Eds, J.F. Kurose, K.W. Ross

