
CS348: Computer Networks

Dr. Manas Khatua
Assistant Professor

Dept. of CSE, IIT Guwahati
E-mail: manaskhatua@iitg.ac.in

Congestion Control
in TCP

mailto:manaskhatua@iitg.ac.in

Principles of Congestion Control

• We have discussed: reliable data transfer service in the face of packet
loss
– such loss typically results from the overflowing of router buffers as the

network becomes congested

• Packet retransmission treats a symptom of network congestion but not
the cause of network congestion

15-02-2019 Dr. Manas Khatua 2

congestion:
• “too many sources sending too much data too fast for network to

handle”
• different from flow control!
• manifestations:

– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

• a top-10 problem!

Causes/Cost of Congestion : scenario 1

15-02-2019 Dr. Manas Khatua 3

 two senders, two receivers

 one router, infinite buffers

 output link capacity: R

 no error recovery (i.e. no
retransmission)

unlimited shared

output link buffers

Host A

sending data rate: lin

Host B

throughput: lout

 max. per-connection throughput: R/2

 no matter how high their sending rates!

 as the router buffer is shared among them.

R/2

R/2

l
o
u
t

lin
R/2

d
e
la

y

lin

 large delays as arrival rate
lin approaches capacity

per-connection
throughput

Cont…

Conclusion:
• while operating at an aggregate throughput of near R

– may be ideal from a throughput standpoint,
– but, it is far from ideal from a delay standpoint!

• Even in this (extremely) idealized scenario
– “cost” of a congested network

• large queuing delays are experienced as the packet arrival rate nears the link
capacity.

• assuming that: (i) the connections operate at these sending rates for an
infinite period of time, (ii) there is an infinite amount of buffering available
 the above delay between source and destination becomes infinite

15-02-2019 Dr. Manas Khatua 4

Causes/costs of Congestion: scenario 2

15-02-2019 Dr. Manas Khatua 5

 one router, finite buffers
 sender retransmission of timed-out packet

 application-layer input = application-layer output: lin = lout

 transport-layer input includes retransmissions : lin >= lin

 Sending rate: lin ; Offered load: lin

finite shared output

link buffers

Host A

lin : original data

Host B

loutl'in: original data, plus

retransmitted data

‘

‘

Cont…

15-02-2019 Dr. Manas Khatua 6

Assume idealization: perfect
knowledge with sender

 sender sends only when
router buffers available

finite shared output

link buffers

lin : original data
loutl'in: original data, plus

retransmitted data

copy

free buffer space!

Host B

Host

A

R/2

R/2

l
o
u
t

lin

 so, no loss lin= lout

Cont…

15-02-2019 Dr. Manas Khatua 7

lin : original data
loutl'in: original data, plus

retransmitted data

copy

no buffer space!

Assume Idealization:
know when loss occur

 sender only re-sends if packet
known to be lost

A

Host B

Cont…

15-02-2019 Dr. Manas Khatua 8

lin : original data
loutl'in: original data, plus

retransmitted data

free buffer space!

R/2

R/2lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions but

asymptotic goodput

is still R/2 (why?)

A

Host B

Assume Idealization:
know when loss occur

 sender only re-sends if packet
known to be lost

Cont…

15-02-2019 Dr. Manas Khatua 9

A

lin
loutl'in

copy

free buffer space!

timeout

R/2

R/2lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Host B

Realistic: duplicates
 packets can be lost, dropped at

router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

Cont…

15-02-2019 Dr. Manas Khatua 10

R/2

R/2lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Realistic: duplicates
 packets can be lost, dropped at

router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

Causes/costs of congestion: scenario 3

15-02-2019 Dr. Manas Khatua 11

 four senders
 multihop paths
 timeout/retransmit
 Overlapping paths
 all have same value of lin

Q: what happens if all lin and lin
’ increase ?

finite shared output

link buffers

Host A lout Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red lin
’ increases, all arriving blue

pkts at upper queue (R1) are dropped;
blue throughput g 0

R1

R2

R3

R4

l'in: original data, plus

retransmitted data

Cont…

15-02-2019 Dr. Manas Khatua 12

another “cost” of congestion:

 when packet is dropped, any “upstream transmission capacity” used for that
packet was wasted! (e.g. work by R4 in above figure)

R/2

l
o
u
t

lin
’

 For extremely small values of lin, buffer overflows are rare

 the throughput approximately equals the offered load

 For slightly larger values of lin, overflows are still rare

 the corresponding throughput is also larger,

 Thus, for small values of lin, an increase in lin results in an increase in lout

all

As red lin
’ increases, all arriving blue pkts

at upper queue (in R1) are dropped, as R1
will give priority to red pkts;
So, blue throughput g 0

Congestion v/s Flow Control

15-02-2019 Dr. Manas Khatua 13

• TCP cannot ignore the congestion in network (at the intermediate points) as it
wants to provide end-to-end reliability

• The use of flow control in TCP cannot avoid congestion in intermediate routers
because

– a router may receive data from more than one sender

– Flow control is for individual TCP sender

– There is no congestion at the either end

– there may be congestion in the middle.

Approaches to Congestion Control

15-02-2019 Dr. Manas Khatua 14

two broad approaches towards congestion control:

end-to-end
congestion control

 no explicit feedback from
network

 congestion inferred from
end-system who observed
loss, delay

 approach taken by TCP

 suitable in datagram
approach

network-assisted
congestion control

 routers/switches provide feedback to
end systems

 single bit indicating congestion
(SNA, DECbit, TCP/IP ECN, ATM ABR)

 explicit rate for sender to send at

 Direct feedback: sent from a network
router to the sender

 Indirect feedback: router marks a field in
a packet flowing from sender to receiver

 suitable for virtual-circuit approach

TCP Congestion control

15-02-2019 Dr. Manas Khatua 15

• Basic approach:
– each sender limit the rate at which it sends traffic into its connection
– set the rate as a function of perceived network congestion.

• perceives less congestion along the path increases its send rate
• perceives huge congestion along the path reduces its send rate

• It should not aggressively send segments to the network
• It can not be very conservative, either, sending a small number of

segments in each time interval

Cont…

15-02-2019 Dr. Manas Khatua 16

• Questions need to answer:
– How does a TCP sender limit the rate at which it sends traffic into its connection?

– How does a TCP sender perceive that there is congestion on the path between itself
and the destination?

– What congestion control algorithm should the sender use to change its send rate as
a function of perceived end-to-end congestion?

Answer of 1st Question:
• To control the number of segments to transmit, TCP uses another variable called

Congestion Window (cwnd)

• Actually, the cwnd variable and the rwnd variable (used for flow control) together define
the size of the send window in TCP

– Actual send window size = min (rwnd, cwnd)

• The constraint above limits the amount of unacknowledged data at the sender and
therefore indirectly limits the sender’s send rate.

Cont…

15-02-2019 Dr. Manas Khatua 17

Answer of 2nd Question:
• TCP sender uses the occurrence of two events as signs of congestion:

– time-out
– 3 duplicate ACKs

Answer of 3rd Question:
• There exist many congestion control algorithm for adjusting the value of cwnd

based upon end-to-end congestion
– Default/basic approach

• Modified TCP with congestion control algorithms
– Tahoe TCP: both signs of occurrence are treated equally
– Reno TCP: both signs of occurrence are treated differently
– New Reno TCP: TCP checks to see if more than one segment is lost in the current window

when 3 duplicate ACKs arrive

TCP Congestion Control: details

15-02-2019 Dr. Manas Khatua 18

 sender limits transmission:

 cwnd is dynamic, function of
perceived network congestion

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte
sent

cwnd

LastByteSent-

LastByteACKed
< cwnd

sender sequence number space

TCP sending rate:

 roughly: send cwnd bytes,
wait RTT for ACKs, then
send more bytes

rate ~~
cwnd

RTT
bytes/sec

TCP congestion control algo
has three components:

 slow start

 congestion avoidance

 fast recovery

Slow Start

15-02-2019 Dr. Manas Khatua 19

 when connection begins, increase
rate exponentially until first loss
event:
 initially cwnd = 1 MSS (maximum-

sized segments)
 double cwnd every RTT
 done by incrementing cwnd for

every ACK received

 summary: initial rate is slow but
ramps up exponentially fast

 This process results in a doubling
of the sending rate every RTT.

Host A

R
T

T

Host B

time

When growth ends?

15-02-2019 Dr. Manas Khatua 20

• 1st case, a loss event indicated by a timeout
• Indicates congestion
• cwnd sets to 1 MSS
• begins the slow start process anew.
• ssthresh (slow start threshold) sets to cwnd/2.

Slow-start strategy is
slower in the case of
delayed ACK.

If two segments are
ACKed cumulatively,
the size of the cwnd
increases by 1, not 2.
With one ACK for
every two segments,
the growth is a
power of 1.5, but
still exponential

• 2nd case, when the value of cwnd equals ssthresh,
• TCP transitions into congestion avoidance state
• cwnd grows linearly

• 3rd case, if 3 duplicate ACKs are detected,
• dupACKs indicate network capable of delivering some

segments
• TCP performs a fast retransmit and enters fast recovery

state
• ssthresh sets to cwnd/2.
• cwnd sets to ssthresh + 3 MSS.
• cwnd grows linearly

Congestion Avoidance

15-02-2019 Dr. Manas Khatua 21

• On entry to this state, the value of cwnd
is approx half its value when congestion
was last encountered

• To avoid congestion before it happens,
we must slow down the exponential
growth of cwnd

• the additive phase begins.

• If 3 dupACKs are detected at this state,
– TCP performs a fast retransmit and

enters the fast recovery state

• If timeout occurs at this state
– TCP enters into slow start

If a new ACK arrives, cwnd =
cwnd + MSS. (MSS/cwnd)

Fast Recovery

15-02-2019 Dr. Manas Khatua 22

• this algorithm is also an additive increase, but it starts when 3 duplicate ACK
arrives

• If a duplicate ACK arrives (after the 3 duplicate ACK which triggers the
recovery)

• cwnd = cwnd + (1/ cwnd)

• If timeout occurs, TCP moves back to slow start state
• If any new ACK arrives, TCP moves back to congestion avoidance state

• This state is recommended, but not mandatory in TCP

FSM of TCP Congestion Control

15-02-2019 Dr. Manas Khatua 23

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3 MSS
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Different Versions

15-02-2019 Dr. Manas Khatua 24

• TCP Tahoe
• signs of congestion occurrence (time-out, 3 duplicate ACK) are treated equally
• uses only slow start and congestion avoidance states

• TCP Reno
• signs of congestion occurrence (time-out, 3 duplicate ACK) are treated differently
• three states in FSM: slow start, congestion avoidance, fast recovery

• TCP New Reno
• It differs from RENO in that it doesn’t exit fast-recovery until all the data which was outstanding at

the time it entered fast recovery is ACKed.
• It is most common today

• TCP Vegas
• variations of the Reno algorithm
• attempts to avoid congestion while maintaining good throughput
• The basic idea of Vegas is to

• (1) detect congestion in the routers between source and destination before packet loss occurs, and
• (2) lower the rate linearly when this imminent packet loss is detected.

Additive Increase Multiplicative Decrease

15-02-2019 Dr. Manas Khatua 25

• TCP congestion control is often refereed to as AIMD form of congestion control.

 approach: sender increases transmission rate (window size), probing for
usable bandwidth, until loss occurs

 additive increase: increase window by 1 MSS every RTT until loss
detected

 multiplicative decrease: cut window in half after loss
c
w
n
d
:

T
C

P
 s

e
n
d

e
r

c
o

n
g

e
s
ti
o
n
 w

in
d

o
w

s
iz

e

AIMD saw-toothed

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

TCP Throughput
• What the average throughput of a long-lived TCP connection would be?

• we’ll ignore the slow-start phases that occur after timeout events as these phases are
typically very short.

• the rate at which TCP sends data is a function of cwnd and current RTT
– Rate = cwnd/RTT

• Let, cwnd = W when a loss event occurs.

• Assume that RTT and W are approximately constant over the duration of the connection
(i.e. in steady-state)
– the TCP transmission rate ranges from (W /2 RTT) to (W /RTT)

• So, the average throughput of a connection = ½ ((W /2 RTT) + (W /RTT)) = 0.75*(W/RTT)

15-02-2019 Dr. Manas Khatua 26

W

W/2If we ignore
slow-start then

TCP over “High-Bandwidth” path
• Example of high speed TCP needed in present era:

• 1500 byte segments, 100ms RTT,
• We want 10 Gbps throughput

• So, using previous formula --> it requires W = 83,333 in-flight segments
• What would happen the case of loss?

• throughput in terms of segment loss probability, L [Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10

it means very small loss rate!

• new versions of TCP for high-speed

15-02-2019 Dr. Manas Khatua 27

TCP throughput =
1.22

.
MSS

RTT L

TCP Fairness

15-02-2019 Dr. Manas Khatua 28

fairness goal: if K TCP sessions share same bottleneck link of bandwidth R,
each should have average rate of R/K

TCP connection 1

bottleneck

router

capacity R
TCP connection 2

15-02-2019 29Dr. Manas Khatua

Content of this PPT are taken from:

1) Computer Networks: A Top Down Approach, by J.F. Kuros and K.W.
Ross, 6th Eds, 2013, Pearson Education.

2) Data Communications and Networking, by B. A. Forouzan , 5th Eds,
2012, McGraw-Hill.

3) Chapter 3 : Transport Layer, PowerPoint slides of “Computer
Networking: A Top Down Approach“, 6th Eds, J.F. Kurose, K.W. Ross

