SSL and TLS

Dr. Mana Khatua Assistant Professor Dept. of CSE, IIT Guwahati Email: <u>manaskhatua@iitg.ac.in</u>

Web Security

- Literally all businesses, most govt. agencies, and many individuals now have Web sites.
- Those are accessed through graphical Web browsers over Internet.
- However, in reality, the Internet and the Web are extremely vulnerable to attack !

Source: https://cwatch.comodo.com/blog/website-security/what-is-website-security/

Web Security Considerations

The World Wide Web (WWW) is

✓ a client-server application running over the Internet and TCP/IP intranets

Few characteristics of Web usage suggest the need for security tools:

U Web servers are relatively easy to configure and manage

Use the content is increasingly easy to develop

□ The underlying software is complex

• May hide many potential security flaws

A Web server can be exploited as a launching pad

• into the corporation's or agency's entire computer complex

Casual and untrained users (in security matters) are common clients for Web-based services

- Such users are not necessarily aware of the security risks that exist,
- and, do not have the tools or knowledge to take effective countermeasures

Threats on Web

	Threats	Consequences	Countermeasures
Integrity	 Modification of user data Trojan horse browser Modification of memory Modification of message traffic in transit 	 Loss of information Compromise of machine Vulnerabilty to all other threats 	Cryptographic checksums
Confidentiality	 Eavesdropping on the net Theft of info from server Theft of data from client Info about network configuration Info about which client talks to server 	•Loss of information •Loss of privacy	Encryption, Web proxies
Denial of Service	 Killing of user threads Flooding machine with bogus requests Filling up disk or memory Isolating machine by DNS attacks 	 Disruptive Annoying Prevent user from getting work done 	Difficult to prevent
Authentication	 Impersonation of legitimate users Data forgery 	 Misrepresentation of user Belief that false information is valid 	Cryptographic techniques

Web Traffic Security Approaches

A number of approaches for Web Security is possible.

				HTTP	FTP	SMTP	
HTTP	FTP	SMTP		SSL or TLS			Kerberos
ТСР				ТСР		UDP	
IP/IPSec				IP			
			· I				

(a) Network level

(b) Transport level

(c) Application level

S/MIME

SMTP

HTTP

TCP

IP

Network Level: One way to provide Web security is to use IP security (IPSec).

• Advantages: (1) transparent to end users and applications;

(2) provides a general-purpose solution;

(3) includes a traffic filtering capability

Transport Level: more general-purpose solution is to implement security just above TCP

• E.g. Secure Sockets Layer (SSL), Transport Layer Security (TLS)

Application Level: Application-specific security services are embedded within the particular application.

• E.g. Kerberos

Source: Cryptography and Network Security – Principles and Practice, by William Stallings, 7th Edition, Pearson India, 2017

Secure Sockets Layer (SSL)

- SSL is an encryption-based Internet security protocol.
 - purpose of ensuring privacy, authentication, and data integrity in Internet communications.
 - developed by Netscape Communications Corporation
- Authentication between client and server using handshake protocol
- High privacy by encryption-decryption
- Data integrity by digitally signed data
- At present it has been deprecated by IETF, and released the successor TLS in 1999.
- SSL-enabled browsers can communicate securely with server having digital certificate, using SSL.
 - So, a browser that does not support HTTP over SSL cannot request URLs using HTTPS.
- ✓ HTTPS represents a unique protocol that combines SSL and HTTP.
 - As HTTPS (HTTP + SSL) and HTTP are different protocols and use different ports (443 and 80, respectively), we can run both SSL and non-SSL requests simultaneously.

SSL Certificates – How it works?

- An SSL certificate is a digital document
 - that mainly binds the identity of a website to a cryptographic key pair (public key & private key)
- An SSL certificate is a type of X.509 public key certificate, but it is a Server Certificate.
- SSL certificates work by establishing an encrypted connection between a web browser and a server using shared secret key

Types of SSL Certificates

- Single-domain: A single-domain SSL certificate applies to only one domain
 - e.g. <u>www.iitg.ac.in</u>
- Wildcard: A wildcard SSL certificate also applies to only one domain. However, it also includes that domain's subdomains.
 - e.g, a wildcard certificate could cover <u>www.iitg.ac.in</u>, <u>www.cse.iitg.ac.in</u>, <u>www.eee.iitg.ac.in</u>, etc.
- Multi-domain: As the name indicates, multi-domain SSL certificates can apply to multiple unrelated domains.

Example Application

FortiClient VPN						
Upgrade to the full version to access additional features	and receive technical support.					
Edit VPN Conn	ection SSL-VPN IPsec VPN XML					
Connection Name Description Remote Gateway	Manas_VPN VPN to Access IITG LAN from Outside agnigarh.iitg.ac.in +Add Remote Gateway Customize port 10443]] x				
Client Certificate Authentication Username	Enable Single Sign On (SSO) for VPN Tunnel None Prompt on login Save login manaskhatua Enable Dual-stack IPv4/IPv6 address]				
	Cancel Save					

Transport Layer Security

Transport Layer Security (TLS) [RFC 5246]:

TLS is a Internet standard that evolved from a commercial protocol SSL

TLS make use of TCP to provide a reliable end-to-end secure service

Few Applications: Web (HTTP+TLS); Email (SMTP+TLS); File Transfer (FTP+TLS)

Source https://dev.to/techschoolguru/a-complete-overview-of-ssl-tls-and-its-cryptographic-system-36pd

TLS Architecture

The main purpose of handshake is for authentication and key exchange.

We will achieve both confidentiality and integrity by using record protocol.

TLS is not a single protocol, but rather two layers of protocols.

- Record Protocol provides basic security services to upper layer protocols such as HTTP.
- Three higher-layer protocols are defined as part of TLS:
 - ✓ Handshake Protocol
 - ✓ Change Cipher Spec Protocol

used to manage TLS exchanges

✓ Alert Protocol

- \checkmark Heartbeat Protocol is also used as fourth one.

TLS Connection & TLS Session

TLS connection

- It is a transport that provides a suitable type of service
- For TLS, such connections are peer-to-peer relationships
- Connections are transient i.e. temporary
- Every connection is associated with one session

TLS session

- It is an association between a client and a server
- Created by the Handshake Protocol
- Define a set of cryptographic security parameters which can be shared among multiple connections
- Used to avoid the expensive negotiation of new security parameters for each connection

Session State Parameters

Session identifier	 An arbitrary byte sequence chosen by the server to identify an active or resumable session state
Peer certificate	 An X509.v3 certificate of the peer; this element of the state may be null
Compression method	 The algorithm used to compress data prior to encryption
Cipher spec	 Specifies the bulk data encryption algorithm and a hash algorithm used for MAC calculation
Master secret	 48-byte secret shared between the client and the server
Is resumable	 A flag indicating whether the session can be used to initiate new connections

Connection State Parameters

Server and client random	• Byte sequences that are chosen by the server and client for each connection		 When a block cipher in CBC mode is used, an initialization vector (IV) is maintained for each key 		
Server write MAC secret	• The secret key used in MAC operations on data sent by the server	Initialization vectors	 This field is first initialized by the TLS Handshake Protocol The final ciphertext block from each record is preserved for use as the IV with the following record 		
Client write MAC secret	• The secret key used in MAC operations on data sent by the client				
Server write key	• The encryption key for data encrypted by the server and decrypted by the client	Sequence	 Each party maintains separate sequence numbers for transmitted and received messages for each connection When a party sends or receives a change cipher spec message, the 		
Client write key	• The encryption key for data encrypted by the client and decrypted by the server	numbers	 appropriate sequence number is set to zero Sequence numbers may not exceed 2⁶⁴ - 1 		

TLS Record Protocol

Handshake Protocol	Change Cipher Spec Protocol	Alert Protocol	
	Re	cord Protoc	ol

Record Protocol Operation

Operation steps before transmission:

- 1) Takes input an application message
- 2) Fragments the data into manageable blocks
- 3) Optionally compress
- 4) Applies MAC
- 5) Encrypts
- 6) Add Header
- 7) Then transmits into a TCP segment

Following are performed **on received data**:

- 1) Remove header
- 2) Decrypted
- 3) Verified
- 4) Decompressed
- 5) Re-assembled
- 6) Then deliver to higher-level users

Record Protocol Operation

TLS Record Format

Content Types:

- change_cipher_spec
- alert
- handshake
- application_data

Major Version: Major TLS version. For TLSv2, it is 3.

Minor Version: Minor TLS version. For TLSv2, it is 1.

Compressed Length:

 Final length of the fragment (max 2¹⁴+2048 bytes)

10-04-2023

Change Cipher Spec Protocol

(a) Change Cipher Spec Protocol

Handshake Protocol	Change Cipher Spec Protocol	Alert Protocol	НТТР	Heartbeat Protocol
Record Protocol				
ТСР				
IP				

Change Cipher Spec Protocol consists of a single message , which consists of a single byte with the value 1.

The sole purpose of this message is to cause **the pending state to be copied into the current state**, which updates the cipher suite to be used on this connection.

Alert Protocol

It is used to convey TLS-related alerts to the peer entity.

Each message in this protocol consists of two bytes:

• Level (1 byte)

- Warning (value 1) for sending warning
- Fatal (value 2) -- TLS immediately terminates the connection. Other connections on the same session may continue, but no new connections on this session may be established.

• Alert (1 byte)

• contains a code that indicates the specific alert

Few Fatal alerts:

unexpected_message
bad_record_mac
decompression_failure
handshake_failure
decryption_failed
record_overflow
access_denied

Few Warning alerts:

- bad_certificate
- certificate_revoked
- certificate_expired
- certificate_unknown
- user_canceled
- no_renegotiation

Example of an Alert

Handshake Protocol

And the of Technology

This protocol allows the server and client

- to authenticate each other
- to negotiate an Encryption and MAC algorithms
- to negotiate cryptographic keys to be used to protect data sent in a TLS record.

The Handshake Protocol is used before any application data is transmitted.

Each message in Handshake Protocol has following three fields:

1 byte	3 bytes	≥ 0 bytes
Туре	Length	Content

(c) Handshake Protocol

- Type (1 byte): Indicates one of 10 messages
- Length (3 bytes): The length of the message in bytes.
- **Content (# 0 bytes)**: The parameters associated with this message

Cont...

Initial exchange between client and server is needed

- To establish a logical connection, and
- To establish security capabilities

It consists of 4 Phases

Establish Security Capabilities

protocol version, session ID, cipher suite, compression method, and initial random

Server Authentication and Key Exchange

Server may send certificate, key exchange, and request certificate. Server signals end

Cont...

Heartbeat Protocol (RFC 6250)

- A heartbeat is a periodic signal generated by hardware / software
 - to indicate/notify normal operation or
 - to synchronize other parts of a system.
- A heartbeat protocol is typically used to monitor the availability of a protocol entity.
- It runs on top of the TLS Record Protocol
- It consists of two message types:
 - heartbeat_request
 - heartbeat_response.
- The use of it is established during Phase 1 of the Handshake protocol
- The heartbeat serves two purposes.
 - First, it assures the sender that the recipient is still alive, even though there may not have been any activity over the underlying TCP connection for a while.
 - Second, the heartbeat generates activity across the connection during idle periods, which avoids closure by a firewall that does not tolerate idle connections.

Cryptographic Computations

Two further items are of interest:

1) The creation of a shared master secret by means of the key exchange

- The shared master secret is a one-time 48-byte value generated for this session by means of secure key exchange
- The creation is in two stages
 - First, a pre_master_secret is exchanged
 - Second, the master_secret is calculated by both parties

For pre_master_secret exchange, there are two possibilities.

- RSA
 - A 48-byte pre_master_secret is generated by the client, encrypted with the server's public RSA key, and sent to the server.
 - The server decrypts the ciphertext using its private key to recover the pre_master_secret.
- Diffie-Hellman
 - Both client and server generate a Diffie–Hellman public key. After these are exchanged, each side performs the Diffie–Hellman calculation to create the shared pre_master_secret.

Both sides now compute the master_secret as follows:

master_secret = PRF(pre_master_secret, "master secret", ClientHello.random || ServerHello.random)

where, ClientHello.random and ServerHello.random are the two nonce values exchanged in the initial hello messages.

PRF: Pseudo Random Function

Cont..

Two further items are of interest:

- 1) The creation of a shared master secret by means of the key exchange
 - The shared master secret is a one-time 48-byte value generated for this session by means of secure key exchange
 - The creation is in two stages
 - First, a pre_master_secret is exchanged
 - Second, the master_secret is calculated by both parties
- 2) The generation of cryptographic parameters from the master secret
 - CipherSpecs require many parameters
 - A client write MAC secret ; A server write MAC secret
 - A client write key ; A server write key
 - A client write IV; A server write IV
 - These are generated from the master secret by hashing the master secret into a sequence of secure bytes of sufficient length

key_block =

```
MD5(master_secret 'SHA (=A> 'master_secret 'ServerHello.random 'ClientHello.random)) '
MD5(master_secret 'SHA(=BB> 'master_secret 'ServerHello.random 'ClientHello.random)) '
```

10-04-2023

PseudoRandom Function

the of Technology

To make PRF as secure as possible, it uses two hash algorithms.

PRF is defined as,

PRF (secret, label, seed) =
P_<hash>(secret, label || seed)

PRF takes as input a secret value, an identifying label, and a seed value and produces an output of arbitrary length.

