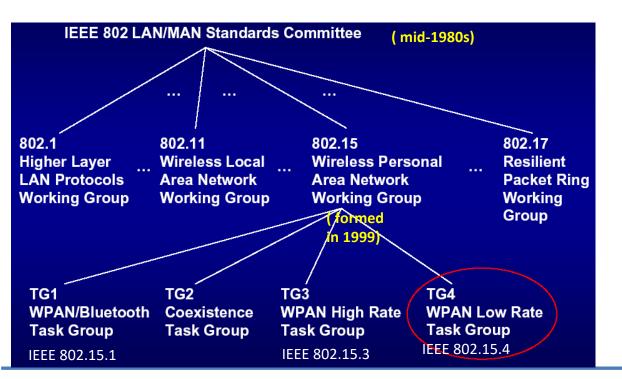
Internet of Things (IoT)

IEEE 802.15.4 Low-Rate Wireless Networks : PHY Layer

2011 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012487
2015 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9144691

Dr. Manas Khatua

Associate Professor


Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

IEEE 802.15 Working Group

- IEEE 802.11 was concerned with features like
 - Ethernet like speed
 - Medium range (~100 m) communication
 - Seamless roaming
 - Less complex message forwarding
 - Data throughput ~ 2-11 Mbps

IEEE 802.15 are focused to

- Short range
 - space around a person or a object (~ 10 m)
- Low cost
- Low power
- Very small packet size

IEEE 802.15 working group mainly defines three standards:

1. High data rate WPAN

- IEEE 802.15.3
- e.g. for multimedia applications

2. Medium rate WPAN

- IEEE 802.15.1 / Bluetooth
- e.g. for device to device communication

Low rate WPAN

- IEEE 802.15.4
- e.g. relaxed data rate, and battery powered device

IEEE 802.15 - Task Group 4

- Task Group 4 (TG4) was formed to define
 - <u>low-data-rate PHY and MAC</u> layer specifications for wireless personal area networks (WPAN)

- WPAN work group (WG) plans to have the following:
 - span in a small area
 - e.g., a private home, an individual workspace
 - short distance communication
 - low-powered communication
 - e.g. lifetime must be few months or years
 - primarily uses ad-hoc networking
 - Generally wireless; could be wired
 - Intended to serve industrial, residential and medical applications

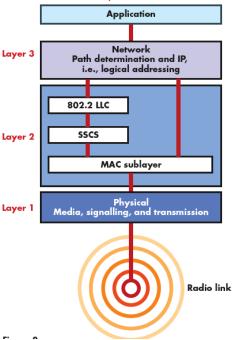
IEEE 802.15.4 LR-WPAN

- Low-rate WPAN (LR-WPAN)
- It is a
 - ✓ simple,
 - ✓ low-cost communication network
 - ✓ that allows wireless connectivity in applications
 - ✓ with limited power and
 - ✓ relaxed throughput requirements.

- Standard has evolved over time:
 - > IEEE 802.15.4-2003
 - > IEEE 802.15.4-2006
 - > IEEE 802.15.4-2011
 - IEEE 802.15.4-2015
 - > IEEE 802.15.4-2020

- Few important features of an LR-WPAN are
 - ✓ ease of installation,
 - ✓ reliable data transfer,
 - ✓ extremely low cost,
 - ✓ a reasonable battery life,
 - ✓ while maintaining a simple and flexible protocol.

Reference: IEEE Std 802.15.4™-2020, "IEEE Standard for **Low-Rate Wireless Networks**",


Developed by the LAN/MAN Standards Committee of the IEEE Computer Society, Approved on 6 May 2020.

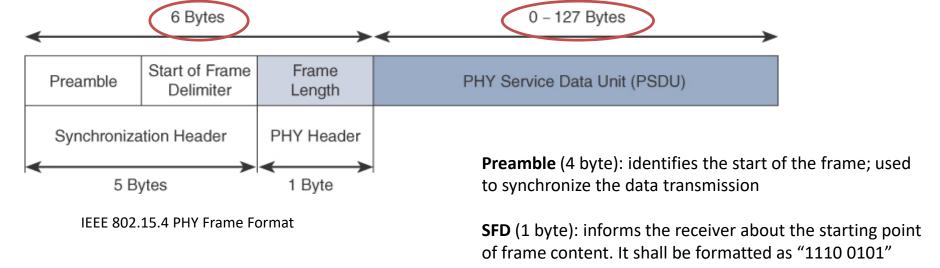
IEEE 802.15.4 Stack - PHY & MAC

IEEE 802.15.4 standard is limited to the PHY & MAC Layers

LLC: Logical Link Control – provides protocol multiplexing

SSCS: Service Specific Convergence Sublayer

- IEEE 802.15.4 standard PHY provides the PHY data service and PHY management services:
 - The PHY data service enables the transmission and reception of PHY protocol data units (PPDU) across the physical radio channel.
 - The PHY's features include
 - radio transceiver activation/deactivation,
 - radio channel selection,
 - energy level detection (ED) ,
 - received signal quality (RSI) or link quality indicator (LQI),
 - clear channel assessment (CCA),
 - channel selection
 - transmitting and receiving packets in 2.4-GHz band.


Image Source: https://www.embedded.com/ieee-802-15-4-zigbee-hardware-and-software-open-the-applications-window/

IEEE 802.15.4 PHY

IEEE 802.15.4 PHY Layer

PHY functionalities:

- Activation & deactivation of the radio transceiver
- Energy level detection (ED) within the current channel
- Link quality indication (LQI) or received signal quality (RSI) for received packets
- Clear channel assessment (CCA) for CSMA-CA
- Channel frequency selection
- Data packet transmission and reception at given frequency

Spectrum

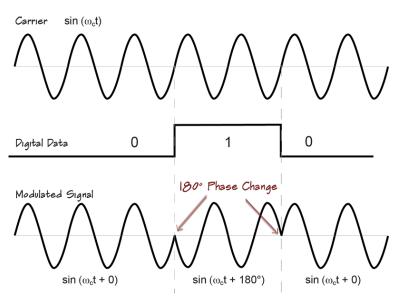
- Federal Communications of Commissions (FCC) in USA decides frequency bands
- Applications using ISM band do not require a licence for stations emitting less than 1W.

FCC Band	Max. Transmit Power	Frequencies
Industrial Band	< 1 W	902 MHz – 928 M Hz
Scientific Band	< 1 W	2.4 GHz – 2.48 GHz
Medical Band	< 1 W	5.725 GHz – 5.85 GHz
U-NII (Unlicensed National Information Infrastructure)	< 40 mW	5.15 GHz – 5.25 GHz
	< 200 mW	5.25 GHz – 5.35 GHz
iiii asti ucture)	< 800 mW	5.725 GHz – 5.82 GHz

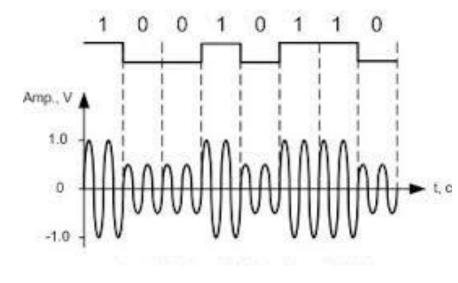
Physical layer transmission options in IEEE 802.15.4-2015

_	2.4 GHz,	16 channels,	data rate 250 kbps - (This is primary)
_	915 MHz,	10 channels,	data rate 250 kbps
_	868 MHz,	3 channel,	data rate 100 kbps

Modulation

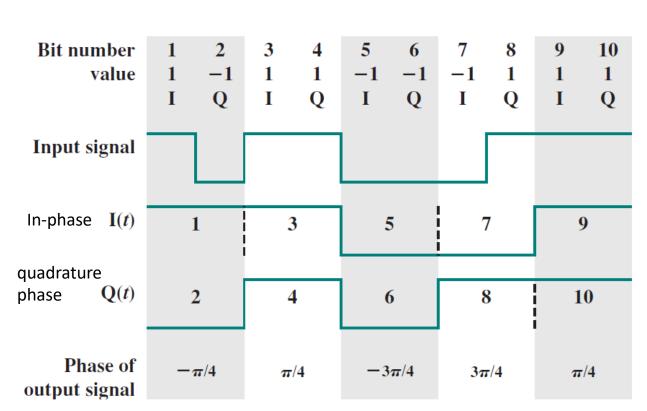

Modulation is the process by which some characteristic of a carrier wave is varied in accordance with an information/ modulating signal.

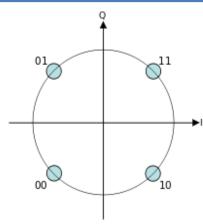
Modulation schemes


OQPSK PHY: DSSS PHY employing Offset Quadrature Phase-Shift Keying (OQPSK) – This is Primary Scheme

• BPSK PHY : DSSS PHY employing binary phase-shift keying (BPSK)

• ASK PHY : PSSS PHY employing Amplitude Shift Keying (ASK) and BPSK


Binary Phase-Shift Keying (BPSK)

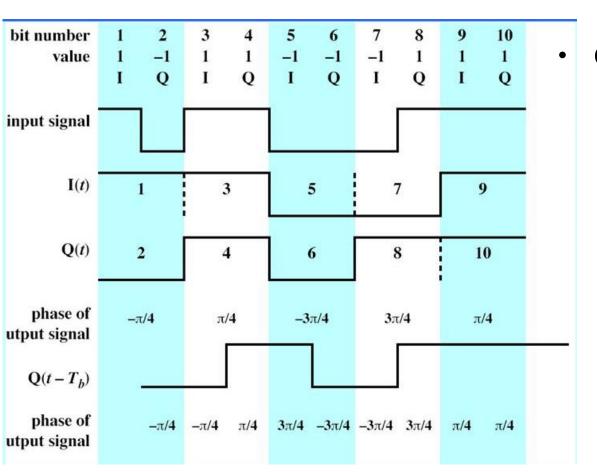


Amplitude Shift Keying (ASK)

QPSK

Constellation diagram for QPSK

Quadrature Phase-Shift Keying (QPSK) QPSK
$$s(t) = \begin{cases} A\cos(2\pi f_c t) + A\cos(2\pi f_c t) \end{cases}$$

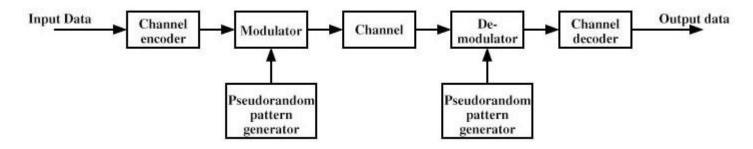

- More efficient use of bandwidth
 - as each signalling element represents more than one bit.

$$\mathbf{QPSK} \quad s(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11 \\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01 \\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00 \\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

Orthogonal QPSK

Problem in QPSK: large phase shift at high transition rate is difficult to perform.
 Phase shift is 180° in QPSK.

OQPSK


- ✓ a variation of QPSK known as offset QPSK or orthogonal QPSK
- ✓ a delay of one bit time is introduced in the Q stream of QPSK
- ✓ Its spectral characteristics and bit-error performance are the same as that of QPSK
- ✓ at any time the phase change in the combined signal never exceeds 90° ($\pi/2$)

Spread Spectrum

Spread Spectrum is a method of <u>spreading a transmitted spectrum over a wide bandwidth</u>, so that the energy at any particular frequency is not detectable <u>without special</u> foreknowledge of the spreading technique.

- Spread-spectrum transmission offers many advantages over a fixed-frequency transmission.
 - Spread-spectrum signals are highly resistant to narrow band interference
 - Signals are difficult to intercept, so immune to jamming
- Types:
 - direct sequence spread spectrum (DSSS)
 - frequency hopping spread spectrum (FHSS)

Cont...

Pseudorandom numbers

- generated by an algorithm using some initial value called the seed
- produce sequences of numbers that are not statistically random, but passes reasonable tests of randomness
- unless you know the algorithm and the seed, it is impractical to predict the sequence

Gain from this apparent waste of spectrum

- The signals gains immunity from various kinds of noise and multipath distortion.
- Immune to jamming attack
- It can also be used for hiding and encrypting signals.
- Several users can independently use the same higher bandwidth with very little interference. (e.g. CDMA)

DSSS

- each bit in the original signal is represented by multiple bits in the transmitted signal, using a spreading code
- spreading code spreads the signal across a wider frequency band in direct proportion to the number of bits used

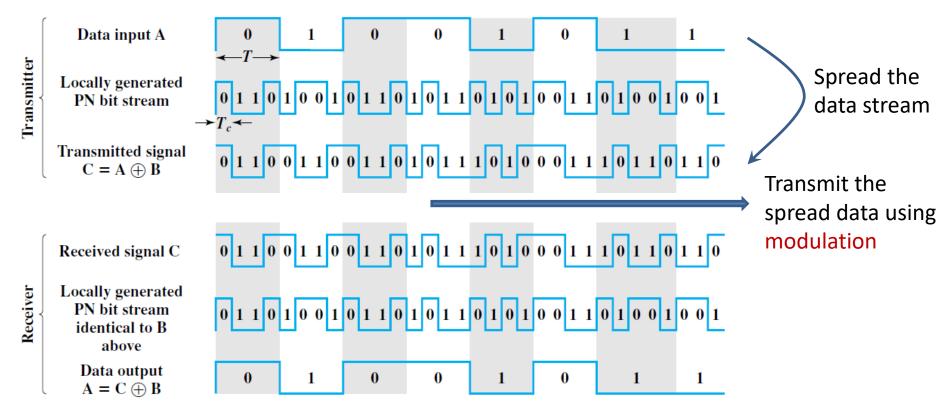
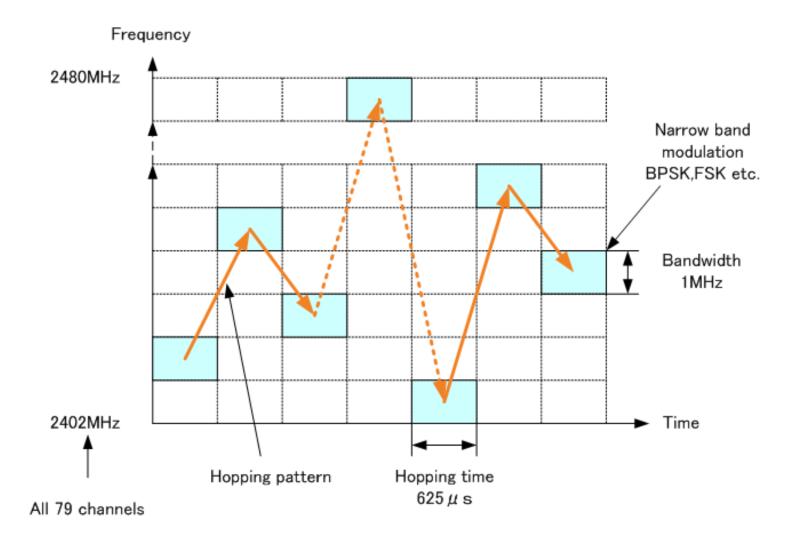
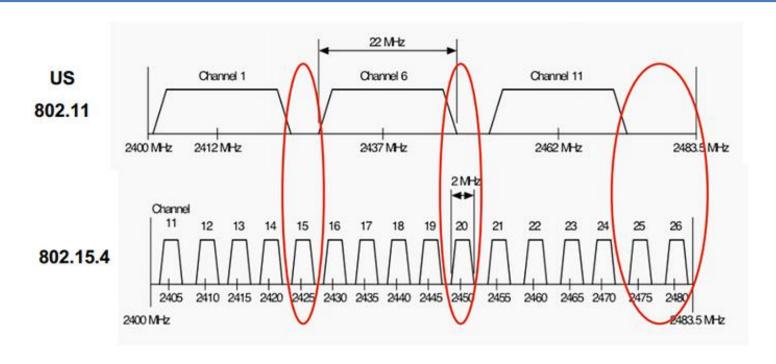



Figure 9.6 Example of Direct Sequence Spread Spectrum


FHSS

Other PHY Attributes

- IEEE 802.15.4 does not prefer to use frequency hopping to minimize energy consumption.
- To minimize interference in 2.4 GHz band, IEEE 802.15.4 prefer channel no. 15, 20, 25, 26
- Transmission power is adjustable from 0.5 mW (min. in 802.1.5.4) to 1 W (max. in ISM band)
- Transmission power 1 mW provides theoretical distances as:
 - Outdoor range 300 m.
 - Indoor range 100 m.

Cont...

- 802.15.4 PHY provides energy detection (ED) feature
 - Application can request to asses each channel's energy level
 - It is an estimate of the received signal power within the bandwidth of the channel
 - Coordinator can make optimal selection of channel based on channels energy level
- 802.15.4 PHY provides link quality information (LQI) to NET and APP layers
 - The LQI measurement is a characterization of the strength and/or quality of a received packet.
 - The measurement may be <u>implemented using</u>
 - receiver ED
 - ii. signal-to-noise ratio (SNR) estimation, or
 - iii. combination of the above methods.
 - Transmitter may decide to use high transmission power based on LQI
 - Applications may dynamically change 802.15.4 channels based on LQI
- 802.15.4 uses CSMA/CA which ask the PHY layer to do CCA
 - Clear Channel Assessment (CCA) is performed by any one of the below methods:
 - Energy above ED threshold regardless of modulation
 - Carrier sense only (i.e. based on the detection of a signal with modulation and spreading characteristics)
 - Combination of both the above

Lessons Learned

- ✓ What is IEEE 802.15.4
 - Introduction to IEEE 802.15 WG
 - Genesis of LR-WPAN

- ✓ IEEE 802.15.4. PHY
 - Functionalities
 - Modulation: QPSK, OQPSK
 - Spread Spectrum: DSSS, FHSS

Thanks!

Figures and slide materials are taken from the following sources:

- 1. David Hanes et al., "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.
- 2. Oliver Hersent et al., "The Internet of Things: Key Applications and Protocols", 2018, Wiley India Pvt. Ltd.