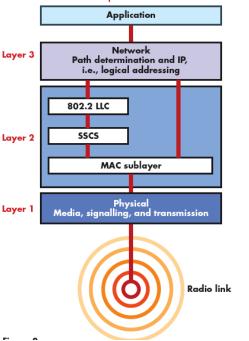
Internet of Things (IoT)

IEEE 802.15.4 Low-Rate Wireless Networks : MAC Layer

2011 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7460875
2020 version: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9144691

Dr. Manas Khatua

Associate Professor


Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

IEEE 802.15.4 Stack - PHY & MAC

The OSI model adapted to the IEEE 802.15.4

LLC: Logical Link Control – provides protocol multiplexing

SSCS: Service Specific Convergence Sublayer

- IEEE 802.15.4 standard is limited to the PHY & MAC Layers
- IEEE 802.15.4 standard MAC provides the MAC data service and MAC management services.
 - The MAC data service enables transmission of MAC protocol data units (MPDU) across the PHY data service.
 - The MAC sublayer features include
 - beacon management,
 - channel access,
 - GTS management,
 - frame validation,
 - ACK frame delivery,
 - association and disassociation,
 - Device security

Standard Document: IEEE Std 802.15.4™-2020, "IEEE Standard for Low-Rate Wireless Networks",

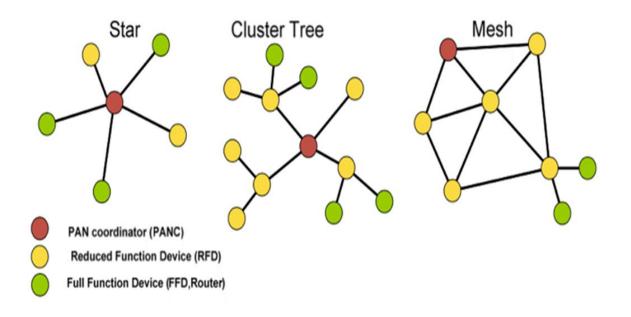
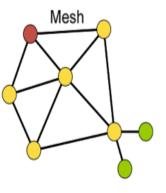

Developed by the LAN/MAN Standards Committee of the IEEE Computer Society, Approved on 6 May 2020.

Image Source: https://www.embedded.com/ieee-802-15-4-zigbee-hardware-and-software-open-the-applications-window/

IEEE 802.15.4 MAC layer

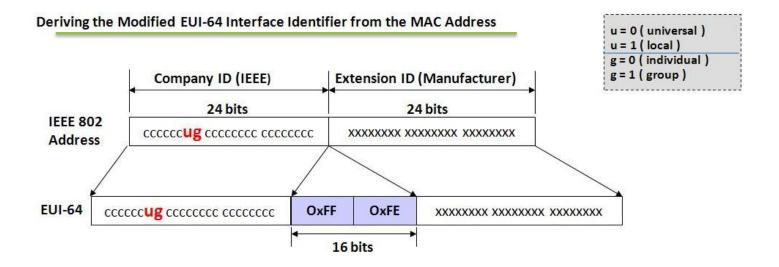
- MAC layer manages access to the PHY channel
 - defines how devices in the same area will share the frequencies allocated.
- MAC layer establish logical topology of the network

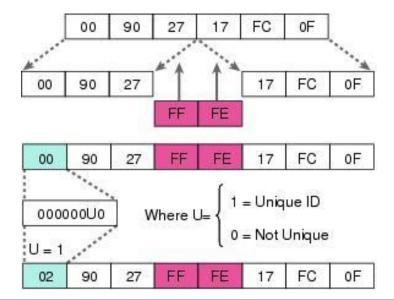
IEEE 802.15.4 Device Types



- There are two different device types :
 - full function device (FFD)
 - reduced function device (RFD)
- The FFD can operate in three modes by serving as
 - PAN Coordinator
 - scanning the network and selecting optimal RF channel
 - selecting the 16 bit PAN ID for the network
 - Coordinator (aka Parent, Join Proxy)
 - relaying messages to other FFDs including PAN coordinator
 - transmits periodic beacon (under beacon enable access mode)
 - respond to beacon requests
 - Device
 - cannot route messages
 - usually receivers are switched off except during transmission
 - attached to the network only as leaf nodes
- The RFD can only serve as:
 - Device

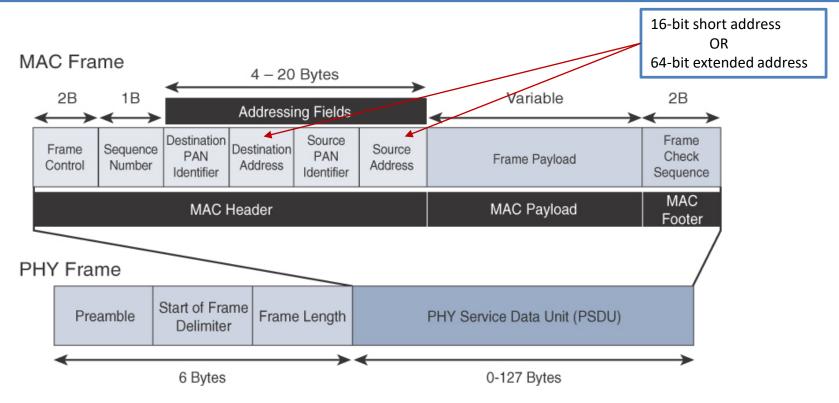
Device Addressing


- Two or more devices wirelessly communicating on the same physical channels following IEEE 802.15.4 constitute a PAN.
 - A PAN includes <u>at least one FFD (PAN coordinator)</u>
 - Each independent PAN will select a unique PAN ID
 - PAN ID is generally of 2 bytes


- Each device operating on a network has a unique 64-bit address
 - called extended unique identifier (EUI-64)
 - This address can be used for direct communication in the PAN
 - This is also called 64-bit long address
 - Generally, it is autogenerated from unique MAC address
- A device also has a 16-bit short address, which is allocated by the PAN coordinator when the device associates with its coordinator.
 - Note: Same short address may be present into different PAN

Deriving EUI-64 ID from MAC

Example:


Addressing Modes

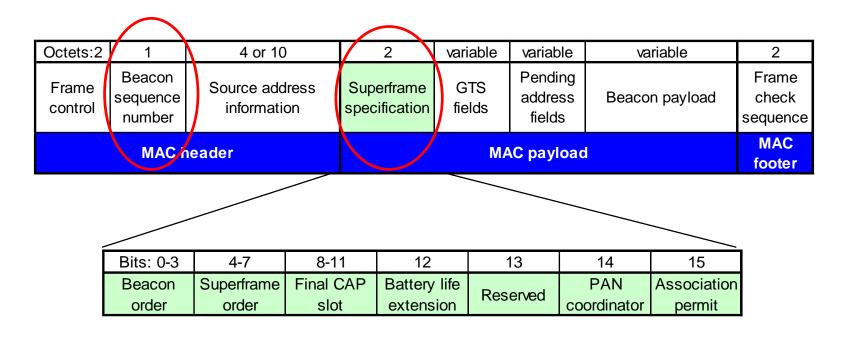
- IEEE 802.15.4 frames contain address of both the source & destination.
- Three different addressing modes, which sets the address field (none/short/long, with/without PAN ID)
 - Short addressing mode: The address field includes a <u>short address</u> (2B) & a <u>PAN ID</u> (2B) = (total of 4 bytes).
 - Long addressing mode: The address field includes a <u>long address</u> (8B) and a <u>PAN ID</u> (2B) = (total of 10 bytes).
 - No addressing mode:
 - For ACK frame both addresses are missing.
 - For Data and Command frames only one (either source or destination) field can be omitted
 - if the source address is omitted, it means the PAN coordinator sent the frame;
 - if the destination address is missing, it means it should be received by the PAN coordinator.

General MAC Frame Format

MAC frame types:

- Data frame
- ACK frame
- Beacon frame
- Command frame

Cont...


802.15.4 MAC header										
Octets:2		1		0/2	0/2/8	0/2	0,	/2/8	variable	
Frame Control		Sequence number		stination AN ID	Destination address	Source PAN II		ource dress	Frame payload	
Bits: 3	1	1		1	1	3	2	2	2	
Frame Type	Security enabled	Fram pendi		ACK required	Pan ID Compress	Reserved	Dest addr mode	Frame Version	Src addr	
-Values o	f the Fran	ne Type	sub	ofield						

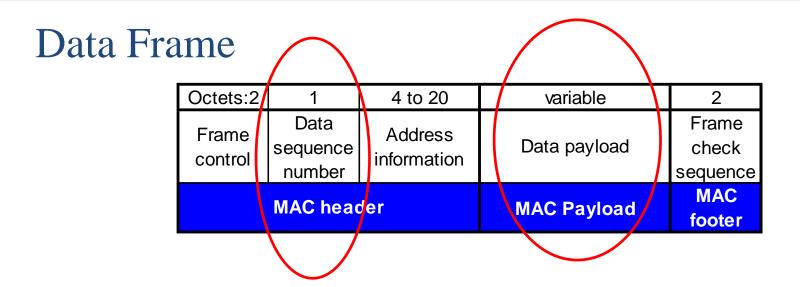
Frame type value b ₂ b ₁ b ₀	Description					
000	Beacon					
001	Data					
010	Acknowledgment					
011	MAC command					
100-111	Reserved					

Addressing mode value $b_1 b_0$	Description				
00	PAN identifier and address field are not present.				
01	Reserved.				
10	Address field contains a 16 bit short address.				
П	Address field contains a 64 bit extended address.				

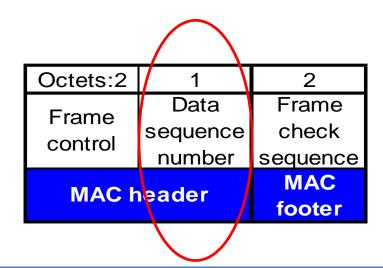
Beacon Frame Format

Command Frame Format

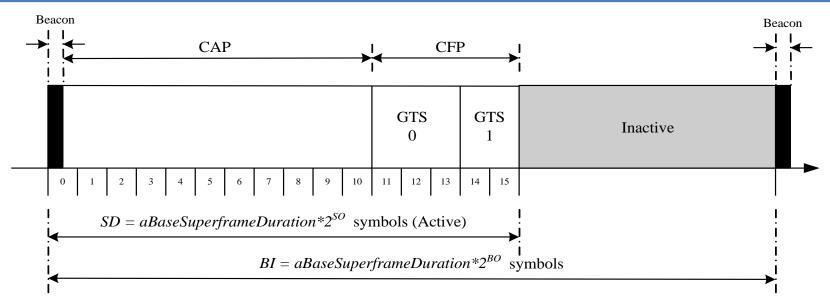
Octets:2	1	4 to 20	1	variable	2
Frame control	Data sequence number	Address information	Command type	Command payload	Frame check sequence
	MAC head	er		MAC footer	


Command Frame Types

- Association request
- Association response
- Disassociation notification
- Data request
- PAN ID conflict notification


- Orphan Notification
- Beacon request
- Coordinator realignment
- GTS request

Data & ACK Frame Format



ACK Frame

Superframe

- A superframe is divided into two parts
 - Inactive: all station sleep.
 - no communication
 - nodes can turn their radios off and go into power saving mode
 - Active:
 - Active period is divided into 16 slots in general
 - 16 slots are further divided into two parts
 - Contention access period (CAP)
 - Contention free period (CFP)
 - Beacon only period (BOP)

- superframe order (SO): decides the length of the active portion in a superframe
- beacon order (BO): decides the length of a superframe or beacon transmission period
- beacon-enabled network should satisfy 0≦S0≦B0≦14
- PAN coordinator decides SO, BO
 - Default value: SO=3, BO=5
- SD: Superframe Duration
- BI: Beacon Interval

Cont...

aBaseSlotDuration

- = The number of symbols forming a superframe slot when the superframe order (SO) is equal to zero
- = 60 PHY symbols

aNumSuperframeSlots

- = The number of slots contained in any superframe
- = 16

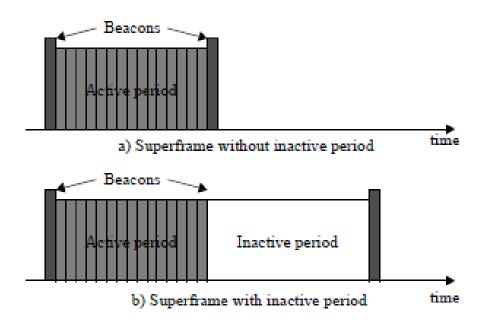
aBaseSuperframeDuration

- = The number of symbols forming a superframe when the superframe order (SO) is equal to zero
- = aBaseSlotDuration × aNumSuperframeSlots

So, Length of a superframe

= can range from 15.36 *msec* to 215.7 *sec* (= 3.5 min).

Each device will be


- active for 2^{-(BO-SO)} portion of the time
- sleep for 1 2^{-(BO-SO)} portion of the time

Duty Cycle:

BO-SO	0	1	2	3	4	5	6	7	8	9	≧10
Duty cycle (%)	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

Beacon Superframe and GTS

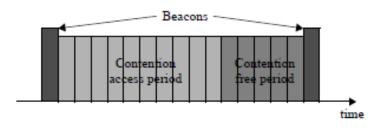


Figure 5-6—Structure of the active periods with GTSs

Active Periods with GTS

Beacon Enabled Superframe

Beaconed / Non-beaconed network

- In a "beacon-enabled" network (i.e. uses superframe structure)
 - Devices use the slotted CAMA/CA mechanism to contend for the channels
 - FFDs who require fixed rates of transmissions can ask for GTS from the coordinator
- In a "nonbeacon-enabled" network (i.e. do not use superframe structure)
 - Devices use the unslotted CAMA/CA mechanism for channel access
 - GTS shall not be permitted
- CSMA/CA is not used for Beacon transmission;
- CSMA/CA is also not used for Data transmission during CFP
- Beacons are used for
 - announcing the existence of a PAN
 - synchronizing with other devices
 - informing pending data in coordinators
 - starting superframes

Data Transfer: Device -> Coordinator

In a beacon-enable network

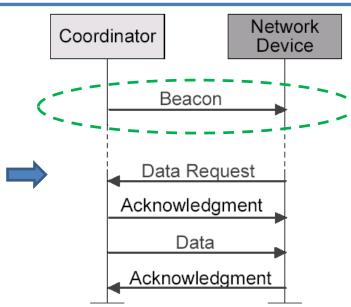
- a device finds the beacon to synchronize to the **superframe** structure.
- Then it uses slotted CSMA/CA to transmit its data.

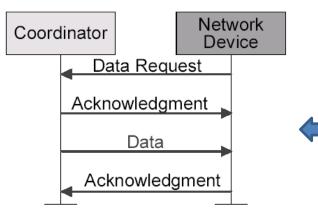
Data Acknowledgment (optional)

Communication to a coordinator In a beacon-enabled network

In a non-beacon-enable network

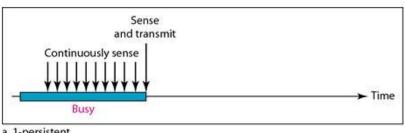
 device simply transmits its data using unslotted CSMA/CA

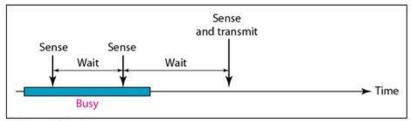



Communication to a coordinator In a non-beacon-enabled network

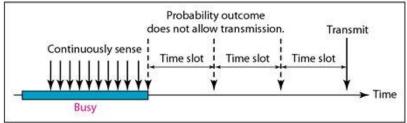
Data Transfer: Coordinator -> Device

- Data transferred from coordinator to device
 - in a beacon-enabled network:
 - The coordinator indicates in the beacon that some data is pending.
 - A device periodically listens to the beacon and transmits a Data Request command using slotted CSMA/CA.
 - Then ACK, Data, and ACK




- Data transferred from coordinator to device
 - in a non-beacon-enable network:
 - The device transmits a **Data Request** using unslotted CSMA/CA.
 - If the coordinator has its pending data, an ACK is replied.
 - Then the coordinator transmits Data using unslotted CSMA/CA.
 - If there is no pending data, a data frame with zero length payload is transmitted.
 - ACK is replied

Channel Access Mechanism



b. Nonpersistent

c. p-persistent

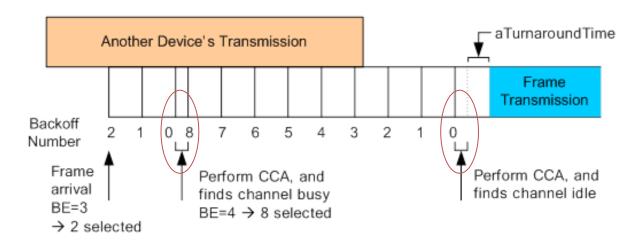
- **CSMA** requires that each station first check the state of the medium before sending.
- This method aims to decrease the chances of collisions when two or more stations want to transmit data
- Persistent methods can be applied to take action when the channel is sensed busy/idle.
 - 1-persistent
 - When station found idle channel, it transmits the frame without any delay.
 - Non-persistent
 - when the channel is found busy, it will wait for the random time and again sense for the state of the station whether idle or busy
 - p-persistent
 - If the channel found to be idle, it transmits the frame with probability p
 - This is implemented using backoff period concept

Unslotted CSMA/CA

CSMA/CA random channel access

➤ nonbeacon-enabled network → uses unslotted CSMA/CA

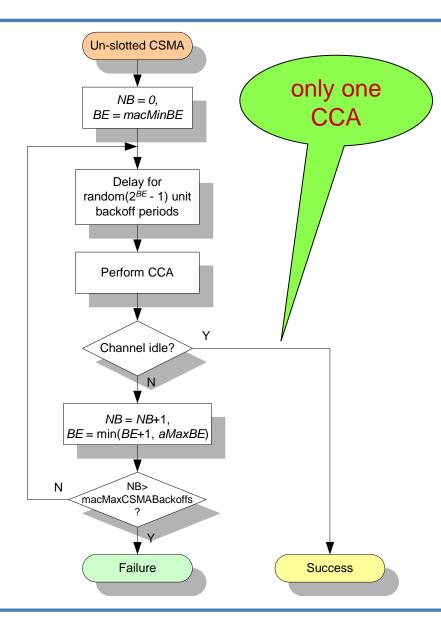
In unslotted CSMA/CA:


- The backoff periods of one device are not related in time to the backoff periods of any other device in the PAN.
- One backoff period = aUnitBackoffPeriod.

Backoff:

 is an algorithm that uses feedback to multiplicatively decrease the rate of some process

Binary exponential backoff (BEB)


 After c collisions in BEB algo., the delay is randomly chosen from [0, 1, ..., N] slots, where N = 2^c - 1.

BE: Backoff Exponent

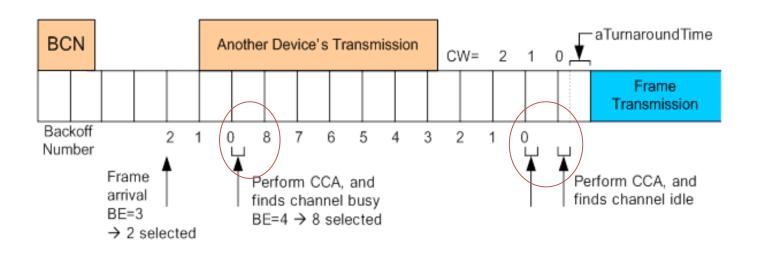
Cont...

NB (Number of Backoff): number of times that backoff has been taken in this attempt of transmission

• if exceeding macMaxCSMABackoff, the attempt fails

BE (Backoff Exponent): play the role to decide how many backoff periods a device shall wait before attempting to assess a channel.

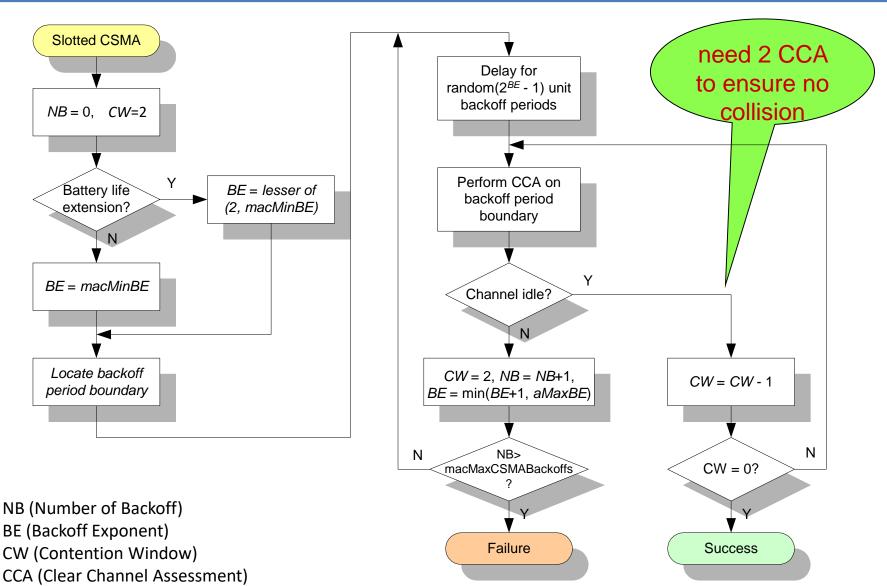
CCA (Clear Channel Assessment)


Slotted CSMA/CA

- CSMA/CA random channel access
 - beacon-enabled network -> uses slotted CSMA/CA

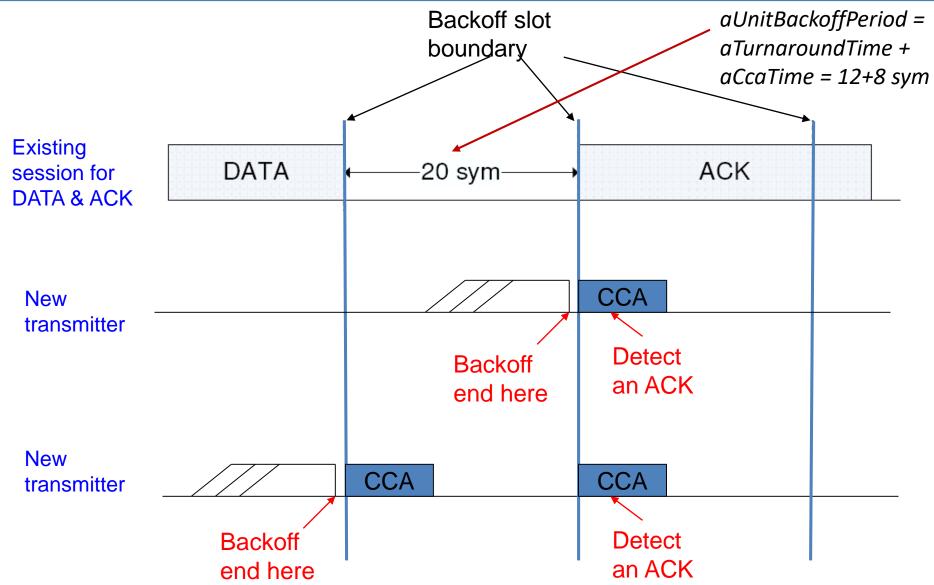
In slotted CSMA/CA:

- The backoff period boundaries of every device in the PAN shall be aligned with the superframe slot boundaries of the PAN coordinator
 - i.e. the start of first backoff period of each device is aligned with the start of the beacon transmission
- The MAC sublayer shall ensure that the PHY layer commences all of its transmissions on the boundary of a backoff period

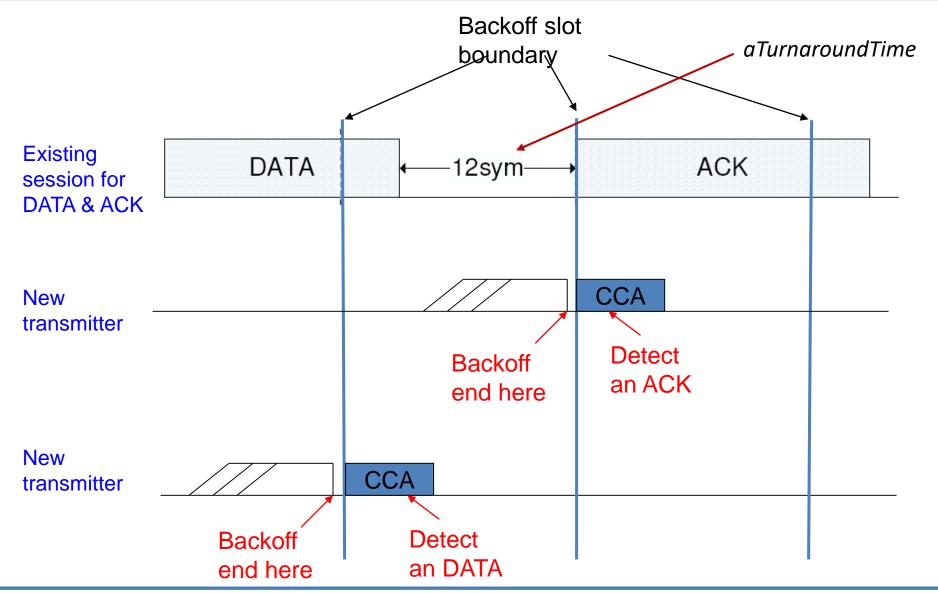

Cont...

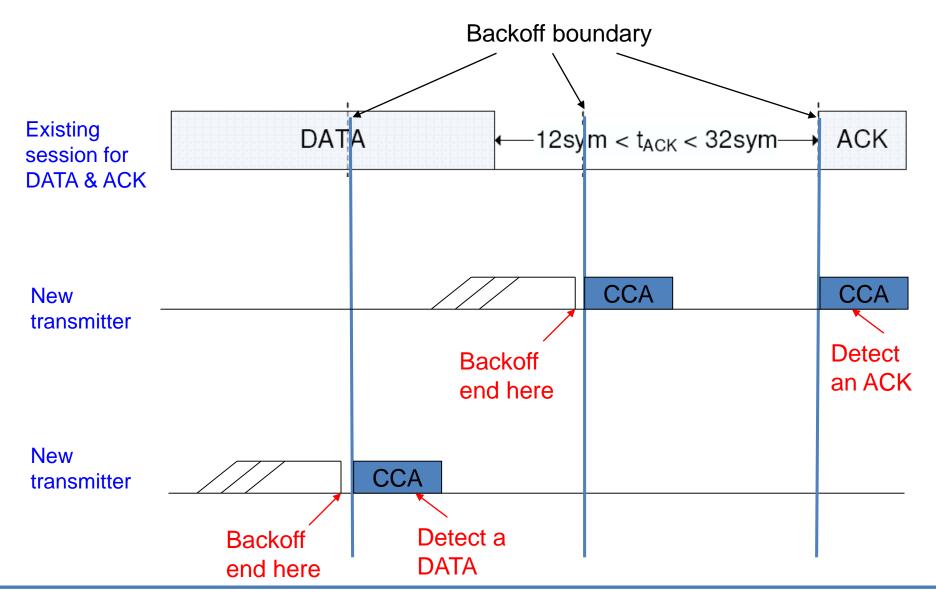
- Each device maintains 3 variables for each transmission attempt
 - NB (Number of Backoff): number of times that backoff has been taken in this attempt of transmission
 - if exceeding macMaxCSMABackoff, the attempt fails
 - BE (Backoff Exponent): play the role to decide how many backoff periods a device shall wait before attempting to assess a channel.
 - The number of backoff periods is lesser than the remaining number of slots in the CAP
 - Otherwise, MAC sublayer shall pause the backoff countdown at the end of the CAP, and resume it at the start
 of the CAP in the next superframe
 - CW (Contention Window): the number of clear slots that must be seen after each backoff
 - always set to 2 and count down to 0 if the channel is sensed to be clear
 - The design is for some PHY parameters, which require 2 CCA for efficient channel usage.
 - Note: CW in 802.15.4 is not same with CW in 802.11
 - CW in 802.11 is used to decide the backoff window size from which the backoff period is chosen randomly
 - CW in 802.15.4 is used to decide how many rounds of CCA is required before getting the channel access
- Battery Life Extension (BLE):
 - designed for very low-power operation, where a node only contends in the first few slots

Cont...

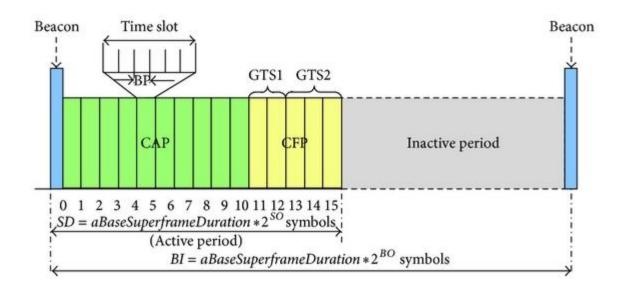

Why 2 CCAs to Ensure Collision-Free

- Each CCA occurs at the boundary of a backoff slot
- Each Backoff Slot duration = 20 PHY symbols
- Each CCA duration = 8 PHY symbols
- The standard specifies that a transmitter node performs the CCA twice in order to protect acknowledgment (ACK).
 - When an ACK packet is expected, the receiver shall send it after a t_{ACK} time on the backoff boundary
 - t_{ACK} varies from 12 to 31 symbols
 - One-time CCA of a transmitter may potentially cause a collision between a newly-transmitted packet and an ACK packet.
 - (See examples below)


Why 2 CCAs (case 1)

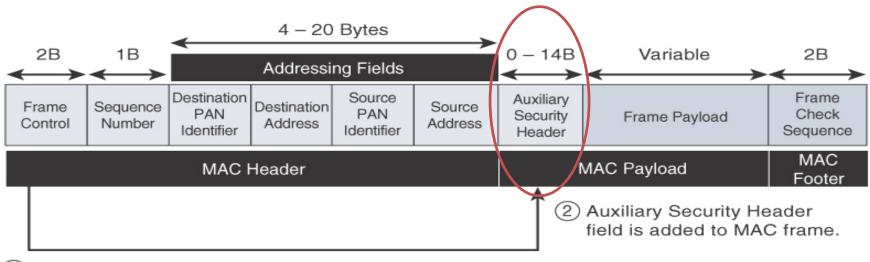

Why 2 CCAs (Case 2)

Why 2 CCAs (Case 3)



GTS Concepts

- A guaranteed time slot (GTS) allows a device to operate on the channel within a portion of the superframe
- A GTS shall only be allocated by the PAN coordinator
- The PAN coordinator can allocate up to 7 GTSs at the same time
- The PAN coordinator decides whether to allocate GTS based on:
 - Requirements of the GTS request
 - The current available capacity in the superframe


Cont...

- A GTS can be deallocated
 - At any time at the discretion of the PAN coordinator, OR
 - By the device that originally requested the GTS
- A device that has been allocated a GTS may also operate in the CAP
- A data frame transmitted in an allocated GTS shall use only short addressing
- Before GTS starts, the GTS direction shall be specified as either Tx or Rx
 - Each device may request one transmit GTS and/or one receive GTS
- A device shall only attempt to allocate and use a GTS if it is currently tracking the beacon
- If a device loses synchronization with the PAN coordinator, all its GTS allocations shall be lost
- The use of GTSs by an RFD is optional

Security

- Security Enabled bit in Frame Control is set to 1.
 - IEEE 802.15.4 specification uses Advanced Encryption Standard (AES) with a 128-bit key length as the base encryption algorithm
 - Message integrity code (MIC), which is calculated for the entire frame using the same AES key, to validate the data that is sent

Limitations in 802.15.4

- Disadvantages of Initial version of IEEE 802.1.5.4
 - MAC reliability
 - unbounded latency
 - multipath fading

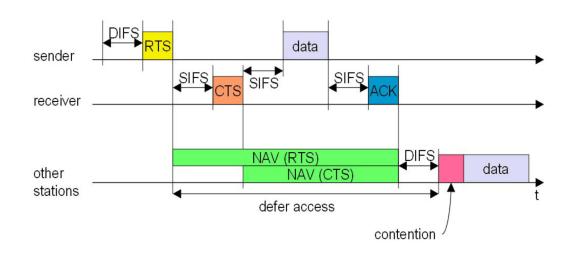
- IEEE 802.15.4e amendment of IEEE 802.15.4-2011 expands the MAC layer feature set
 - > to remedy the disadvantages of 802.15.4.
 - to better suitable in factory and process automation, and smart grid
 - Main modifications were:
 - · frame format,
 - · security,
 - determinism mechanism,
 - · frequency hopping

- IEEE 802.15.4g amendment of IEEE 802.15.4-2011 expands the PHY layer feature set
 - to optimize large outdoor wireless mesh networks for field area networks (FANs)
 - to better suitable in smart grid or smart utility network (SUN) communication
 - Main modifications were:
 - New PHY definitions
 - some MAC modifications were needed to support the new PHY

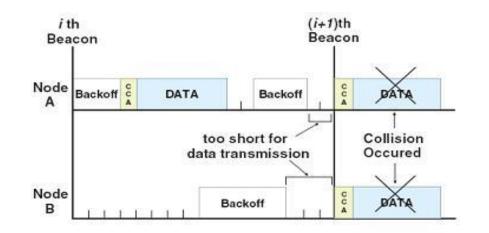
Lessons Learned

- ✓ IEEE 802.15.4 MAC
 - Network Topology
 - Device Types
 - Device Addressing
 - MAC Frame Formats
 - Timeslot, Superframe
 - Data Transfer Model
 - Channel Access Methods
 - Slotted CSMA/CA
 - Guaranteed time slot (GTS)
 - Association Procedure
 - Security
- ✓ Limitations of IEEE 802.15.4

Thanks!



Figures and slide materials are taken from the following sources:


- 1. David Hanes et al., "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.
- 2. Oliver Hersent et al., "The Internet of Things: Key Applications and Protocols", 2018, Wiley India Pvt. Ltd.

Contention in 802.11 & 802.15.4

Contention in IEEE 802.11 DCF

Contention in IEEE 802.15.4 (for slotted CSMA/CA)