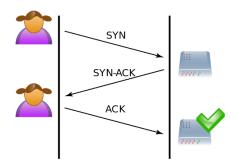
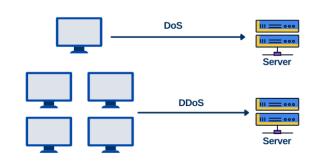
Intrusion Detection Systems

Dept. of Computer Science & Engineering Indian Institute of Technology Guwahati

> URL: http://manaskhatua.github.io/ Email: manaskhatua@iitg.ac.in

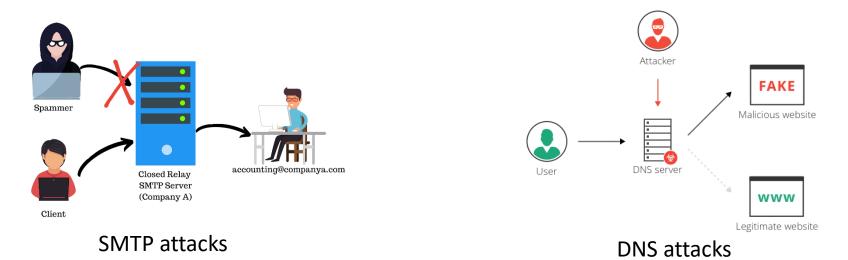
Content


- ✓ Common Attacks on Networks and Systems
- ✓ Traditional Solution
- ✓ IDS (Intrusion Detection System)
 - Goals
 - Classifications
- ✓ Anomaly vs Rule-based Detection
- ✓ Network v/s Host-based Detection
- ✓ Pros & Cons of IDS
- ✓ Snort NIDS Demo

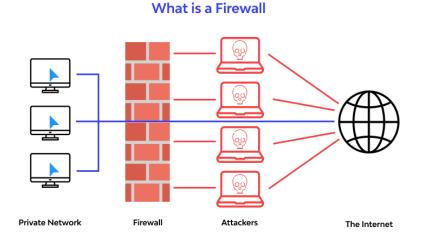


Common Attacks

- ►IP Spoofing: Hides the identity of the sender or impersonates another computer system
- >SYN Flood: Makes a server unavailable to legitimate traffic by consuming all available server resources
- Denial of Service (DoS): Shut down a machine or network, making it inaccessible to its intended users
- Smurf Attack: Causes a ping flood on the victims computer resulting in DDoS attack
- CGI scripts: Uses Common Gateway Interface (CGI) program security holes
- > Web Server attacks: Uses security holes (e.g. session hijacking, http response splitting, html injection)



Common Attacks


- >SMTP attacks: Uses security holes in DEBUG commands and SMTP protocol
- > DNS attacks: Targets the availability or stability of a network's DNS service
- Access attacks: Failed login attempts, failed file access attempts, password cracking, administrative powers abuse.
- ►IMAP attacks: Uses security holes in IMAP protocol
- Buffer overflows: Hackers push too much data. The excess data corrupts nearby space in memory.

The Traditional Solution

- Install a **firewall** to protect the internal network from the outside world.
 - Assume that the firewall will protect against all current security threats
- ➤ Usually the following are not done:
 - Do not install additional security measures to complement the firewall.
 - Do not individually secure internal networks and systems.
 - Do not regularly review the organizational security policy.
 - Do not regularly update the firewall.
 - Ignore the firewall logs because they are to voluminous and too difficult to process.

Shortcomings

- Firewalls are mandatory security component, but are not enough on their own
- Even a properly configured firewall is not absolutely secure
 - Because it is possible to exploit the services the firewall allows
 - Or to cause the firewall or network itself become unusable.

- ➤ Network security is similar to physical security
 - A multi-layered approach is best
- > Also need
 - A solid understanding of network security issues
 - And a good security policy are essential to any successful network security deployment.
- Some of the most common security techniques are:
 - Intrusion Detection System (IDS), Security Scanners

Intrusion Detection System

≻IDS definition

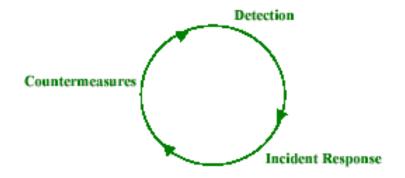
- An intrusion detection system (IDS) inspects all inbound and outbound network activity and identifies suspicious patterns that may indicate a network or system attack from someone attempting to break into or compromise a system.
- ► Intrusion Detection is the process of
 - Discovering
 - Identifying
 - Analyzing
- Unauthorized malicious activities
 - Targeted at computing and networking resources

Network-based IDS/IPS Server Host-based IDS/IPS Server Host-based IDS/IPS Server Host-based IDS/IPS Server Server

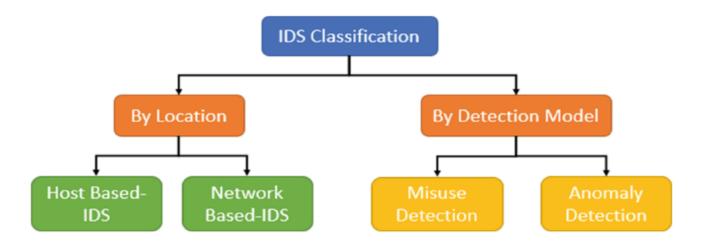
What is Intrusion?

 It is any set of actions that attempt to compromise Confidentiality, Integrity and/or Availability of a system resource.

IDS (cont...)

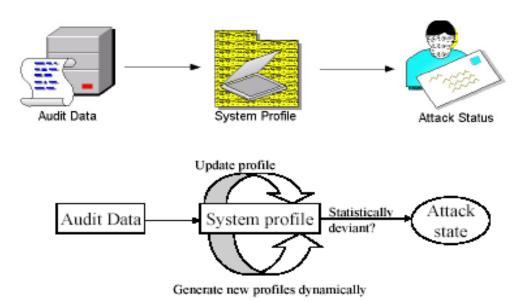

- Detection is the act of discovering or ascertaining the
 - Existence
 - Presence
 - Or fact of something

- A system is a group of interacting, interrelated, or independent elements forming a complex whole.
- Thus, IDS is a group of interacting elements that together are used to ascertain the
 existence of a set of actions that attempt to compromise confidentiality, integrity or
 availability of a resource.


Goal of Intrusion Detection

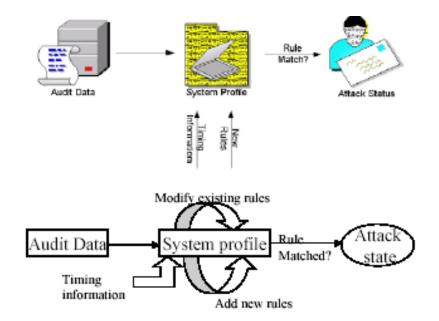
- ➤It is best to prevent access
- > As a second line of defense: Intrusion detection
 - Based on the assumption that the behaviour of intruder differs from legitimate users
- The intruder can be identified and ejected from the system
- Instruction detection enables
 - The collection of information about intrusion techniques
 - That can be used to strengthen the intrusion prevention facility
- >A complete IDS consists of the following sequence of events

IDS Classification



- Categorize IDS into the following:
 - Anomaly detection v/s Rule-based detection
 - Network-based v/s Host-based systems
- Anomaly detection
 - Deviations from normal system operations
- Rule-based detection
 - Known patterns

Anomaly Detection


- Looks at behavior that deviates from normal system use
- Collect data and determine the pattern of legitimate user
- >Threshold detection
 - Define thresholds for frequency of occurrence of events
- Profile based detection
 - Develop profile of activity for each user.

Rule-based Detection

- Looks for behavior that matches a known attack scenario
- > Define a set of rules to evaluate a user's behavior
- Deviation detection
 - Detect deviation from previous behavior
- Penetration identification
 - Use an expert system, based on a set of rules to evaluate user behavior

Example: Rules for Penetration Detection

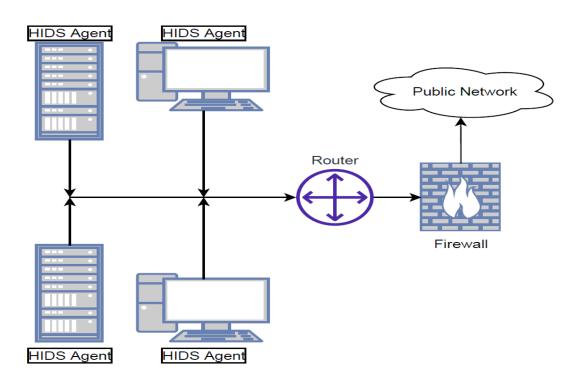
- >Users should not read files in other users' personal directories.
- Users must not write other users' files.
- Users who log in after hours often access the same files they used earlier.
- ➤ Users do not generally **open disk** devices directly but rely on highest level OS utilities.
- ➤ Users should not be logged in more than once to the same system.
- Users do not make copies of system programs.

Host-based IDS

➤ Host-Based intrusion detection uses the following.

- Monitor OS events and logs
- Listens to the port activities
- Monitors systems files by using checksums
- Uses regular-expressions for signatures

≻Checks


- Unauthorized activity;
- privilege violations;
- failed login attempts

➤ Typically

- Signature based for log monitors
- cryptographic for change detection

> Aims to Detect

- Signs of intrusion on hosts;
- malicious system activities

Examples: Host-based IDS

≻OSSEC

- An open source HIDS produced by Trend Micro. Also supports NIDS.
- Can be used on a wide range of operating systems (OS)
- It monitors event logs and also the registry.

Source: https://www.ossec.net/

>Splunk

- Offers both HIDS and NIDS features
- Follows anomaly-based detection method
- Can detect threats that aren't discovered through logs
- Provides workflow automation features
- Splunk dashboard has multiple data visualization options
- Supports Linux and Windows

Source: https://www.splunk.com/

Examples: Host-based IDS

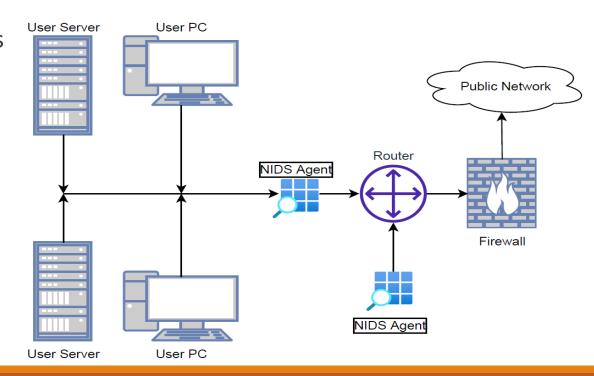
≻Sagan

- Uses both anomaly and signature-based detection methods.
- Multi-threaded architectural approach
- Offers IP geolocation facility
- Allows to set time-related rules to trigger alerts
- Supports Unix, Linux, and Mac OS, but not Windows.

Source: https://quadrantsec.com/sagan_log_analysis_engine/

➤ Wazuh

- Provides monitoring, detection, and alerting of security events and incidents
- Continuous managing and responses to advanced threats
- Provides users with navigation authority through security alerts
- Perform file integrity monitoring and log data analysis


Source: https://wazuh.com/

Network-based IDS

- Uses the following procedure to detect intrusion
 - Traffic sniffing on network
 - Sniffing (passive listening)
 - Uses signature database

- Detects unauthorized activities
 - Signs of intrusion on networks
 - Malicious network traffic
- **≻**Check
 - External attacks
 - Internal misuse

Examples: Network-based IDS

≻Snort

- Offers anomaly and signature-based solutions
- Identifies attacks such as buffer overflows, stealth port scans, CGI attacks;
- Works with platforms like Linux, Windows, Fedora, Centos, and FreeBSD;
- High-level customizable solutions

Source: https://www.snort.org/

Suricata

- Real-time intrusion detection and prevention
- Multi-Threaded architecture and scalable code base
- Application-layer logging and analysis, including TLS/SSL certs, HTTP requests, DNS requests, and more
- Cross-platform support Linux, Windows, macOS, OpenBSD, etc.
- Built-in hardware acceleration (GPU for network sniffing)

Source: https://suricata.readthedocs.io/en/latest/#

Examples: Network-based IDS

➤ Bro (renamed Zeek)

- Comprehensive traffic logging and analysis
- DNS/FTP/HTTP/IRC/SMTP/SSH/SSL/other protocol support
- Fully passive traffic analysis with network tap or monitoring port
- Real-time and offline analysis
- Cluster-support for large-scale deployments
- Powerful and flexible event-driven scripting language (Bro scripts)

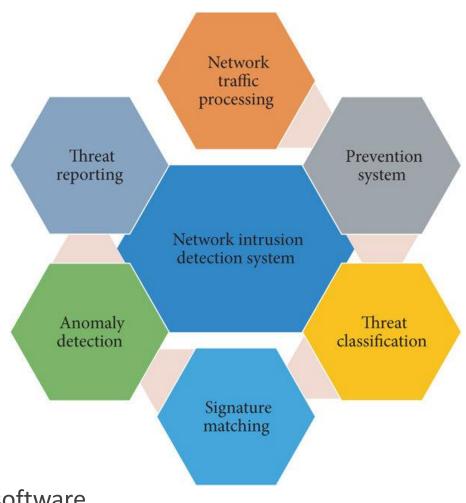
Source: https://zeek.org/

►IBM QRadar

- Al-driven anomaly-based detection
- Provides visibility and applies context to on premise and cloud-based resources
- Analyzes network, endpoint, asset, user, risk and threat data to uncover known and unknown threats
- Automatically makes sense of data from disparate sources
- Highly scalable, self-managing security database

Source: https://www.ibm.com/in-en/products/gradar-siem/features

Why utilize IDS?


- Greater proficiency
 - (as opposed to humans) in detecting intrusions
- Reduction of manpower (needed to discover incidents)
- Technical expertise (not otherwise available)
- Wealth of information (useful in dealing with an attack)
- Ability to quickly shut off attacks (through "isolation")
- ➤ Handle large amount of data
- ➤ Warning value

Why utilize IDS? (Cont...)

- Detecting external attacks
- Detecting internal attacks
- Detecting policy violations
 - Accessing non-work related web sites
- Detecting unauthorized changes to configurations
 - Bypassing change control procedures

Detecting viruses and other malicious software

Data used by IDSs

- Firewall data (`best source')
- ► Log data from systems
- Data from passive devices (e.g. sniffers)
- ➤ Data from packet filters (e.g. TCP wrappers, Nuke Nabber)
- > Data from integrity checking tools (e.g. Tripwire)
- Output of intrusion detection systems (other IDSs)
- ➤Other types

➤ Disadvantages

- Immaturity; False alarms; Performance decrements; Initial cost;
- Vulnerability to attacks; Applicability to the full range of attacks that occur;
- Vulnerability to tampering; Changing technology; May yield superfluous data

Vulnerabilities of IDS

- >Insertion attacks
 - IDS accept host rejected packets
- > Evasion attacks
 - Packets with same sequence numbers
 - Packet overlay
- ➤ Denial-of-service attacks
 - Especially from the inside
 - Unlike a firewall, an IDS does not block packets
 - An IDS discards packets if resources are exhausted

Snort NIDS

- Free and open source signature/rule based IDS currently developed by Cisco
- ➤ Network intrusion detection system (IDS) and intrusion prevention system (IPS)
- > Ability to perform real-time traffic analysis and packet logging on IP networks
- Performs protocol analysis,content searching and matching
- Can also be used to detect attacks like:
 - operating system fingerprinting attempts
 - semantic URL attacks, buffer overflows
 - server message block probes, and stealth port scans

Snort NIDS

Configured in three main modes:

- Packet sniffer: Read network packets and display them on the console.
- Packet logger: The program will log packets to the disk.
- Network intrusion detection
- ➤ Network intrusion detection mode:
 - monitor network traffic and analyze it against a rule set defined by the user
 - Then perform a specific action based on what has been identified

≻Snort rules:

- Alert Rules: This uses the alert technique to produce notifications.
- Logging Rules: It logs each individual alert as soon as it is generated.
- Pass Rules: If the packet is deemed malicious, it is ignored and dropped.

Thank you

Questions and Discussion

