# **CS578: Internet of Things**



#### **Introduction to Arduino**

#### **Arduino UNO Board & IDE**



**Dr. Manas Khatua** 

#### Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

"The soil of India is my highest heaven, the good of India is my good." - Swami Vivekananda

## What is Arduino?



- Arduino is an open-source electronics platform
  - based on easy-to-use hardware and software.
- It was born at Interaction Design Institute Ivrea, Italy
  - an easy tool for fast prototyping
  - aimed at students without any background in electronics and programming.
- These boards are incorporated with microcontrollers
  - To execute a small program, to receive input, to apply action on real world
- It has the capability to act as an interface for electrical and electronic systems
- These boards are used extensively because:
  - Inexpensive
  - Cross-platform runs on Windows, Mac OS, and Linux OS.
  - Easy-to-use hardware and software environment
  - Open source hardware and software IDE
  - Capable to interact with other boards and computers
  - Can interact with sensors and actuators
  - Facilitate serial communication

#### **Types of Arduino Boards**

- Entry Level easy to use and ready to power your first creative projects.
  - Arduino UNO
  - Arduino Nano
  - Arduino Micro
- Enhanced Features boards with advanced functionalities, or faster performances
  - Arduino Zero
  - Arduino Mega 2560
  - Arduino Motor Shield
  - Internet of Things Make connected devices easily with one of these IoT products
    - Arduino Nano 33 IoT
    - Arduino Nano 22 BLE
    - UNO WiFi REV2



Arduino UNO



Arduino Mega 2560



Arduino Nano 33 IoT



#### **Arduino UNO**



- Arduino UNO is a Single board Microcontroller based on ATmega328P Processor
  - a product of Atmel (now Microchip)
  - 32 represents it's flash memory capacity that is 32KB
  - 8 represents it's CPU type that is of 8 bit
  - p simply denotes picoPower (i.e. very low power).



# Pins/Jacks in Arduino UNO R3

- It has the following major pins/jacks:
  - $\checkmark$  14 digital input/output pins (of which 6 can be used as PWM outputs),
  - ✓ 6 analog inputs,
  - $\checkmark$  6 pins related to energy/power
  - ✓ a reset pin
  - $\checkmark$  an analog reference pin
  - $\checkmark$  a reset button
  - ✓ a USB connection,
  - $\checkmark$  a power jack,
  - ✓ a 16 MHz ceramic resonator,
  - ✓ two ICSP header
  - ✓ Atmel ATmega328 IC pins



#### Source: https://docs.arduino.cc/hardware/uno-rev3

## **Detailed Pin Diagram**





## **Pin Description**



| Pin category                              | Pin Name                                             | Details                                                                                                                                                |
|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Pins                                | Vin, 3.3V, 5V,<br>GND,<br>RESET                      | Vin : Input voltage to Arduino when using an external power source.                                                                                    |
|                                           |                                                      | <b>5V</b> : Regulated power supply used to power microcontroller and other components on the board.                                                    |
|                                           |                                                      | <b>3.3V</b> : 3.3V supply generated by on-board voltage regulator.<br>Maximum current draw is 50mA.                                                    |
|                                           |                                                      | GND : ground pins.                                                                                                                                     |
|                                           |                                                      | Reset: Reset the microcontroller                                                                                                                       |
| ICSP: In-Circuit<br>Serial<br>Programming | ICSP pins:<br>MISO, VCC,<br>SCK, MOSI,<br>RESET, GND | Used to code and boot an Arduino from an external source.<br>Allow inter workings of two or more Arduino boards.<br>Allow you to upload your firmware. |

#### Cont...



| Pin category                                 | Pin No / name                                    | Details                                                                                                                                                                                                              |  |  |
|----------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Analog pin                                   | A0 - A5                                          | Used to provide analog input in the range 0-5V.                                                                                                                                                                      |  |  |
| Digital Input/output pin                     | Digital Pins 2 - 13                              | Can be used as input or output pins.                                                                                                                                                                                 |  |  |
| Serial Communication                         | 0(Rx),1(Tx)                                      | Used to receive and transmit TTL serial data.                                                                                                                                                                        |  |  |
| External Interrupts                          | 2, 3                                             | To trigger an interrupt.                                                                                                                                                                                             |  |  |
| PWM: Pulse Width<br>Modulation               | 3, 5, 6, 9, 10, 11                               | Provides 8-bit PWM output.                                                                                                                                                                                           |  |  |
| SPI: Serial Peripheral<br>Interface          | 10 (SS), 11 (MOSI), 12<br>(MISO) and 13 (SCK)    | Used for SPI communication.                                                                                                                                                                                          |  |  |
| Inbuilt LED                                  | 13                                               | To turn on the inbuilt LED.                                                                                                                                                                                          |  |  |
| I2C: Inter-IC, or<br>TWI: Two Wire Interface | A4 (SDA: Serial Data),<br>A5 (SCL: Serial Clock) | Used for TWI / I2C communication.                                                                                                                                                                                    |  |  |
| AREF                                         | AREF : Analog Reference<br>Voltage               | To provide reference voltage from an external power supply for analog-to-digital conversion of inputs to the analog pins.<br>E.g. if AREF is 4V – the analogRead() range of 0~1023 will relate to 0~4V and not 0~5V. |  |  |

## Arduino in IoT

And the of Technology

- Arduinos are used to create IoT projects.
- But, it requires either a specialized Arduino or shields to provide network capabilities
- The network interface could be Ethernet / WiFi / Cellular



EtherTen







Arduino Ethernet Shield

#### Arduino + Ethernet Shield

Arduino UNO WiFi Rev2

## **Configure Arduino IDE**

- the indemnity of the of Technology
- Download and Install Arduino IDE <a href="https://www.arduino.cc/en/Main/Software">https://www.arduino.cc/en/Main/Software</a>
- The Arduino Software (IDE) allows you to write programs and upload them to your board.
- When the Arduino IDE first opens, this is what you should see:



#### **Built-in Examples**





- Launch the Arduino application
- Programs written using Arduino IDE are called **sketches**.
- There are many built-in examples / sketches.
- To open built-in examples: select File
  -> examples.
- These simple programs demonstrate all the basic Arduino commands.

#### **Set Arduino Board**





- Plug in your board through cable
- Select the type of Arduino board you're using:
  - ✓ Tools -> Board -> (your board type)
    - ✓ e.g. Arduino UNO

#### **Set Serial Port**





- Select the serial/COM port that your Arduino is attached to:
  - ✓ Tools > Port > COMxx

Note: If you're not sure in which serial port your Arduino is connected, take a look at the available ports, then unplug your Arduino and look again. The one that disappeared is your Arduino.

#### **Code Compilation**





Compilation successful message at the bottom left corner.

## **Code Uploading**



#### local\_server | Arduino 1.8.9 Ø local serv 1 #include SP8266WiFi.h> //Including ESP8266 library 2 #include<ESP266WebServer.h> //Including ESP8266WebServer library for web serv //Including ThingSpeak library 3 #include<Thing Upload Button 5 IPAddress IP(192,160,4 (15), //State C IP address of local server 6 IPAddress gateway(192,168,4,1); //Gateway of the network 7 IPAddress mask(255, 255, 255, 0); //Subnet mask of the network 9 WiFiClient client: 10 WiFiServer server(80); 11 12 unsigned long myChannelNumber = 814887; //Replace with channelID of ThingSpeak 13 const char \* myWriteAPIKey = "EK4LTPHWU4GGEOVP"; //Replace with WriteAPIKey of 14 15 const char\* softAPssid = "ESP8266": //SSID of the hotspot of ESP8266 acting 16 const char\* password = "12345678";//Password of the hotspot of ESP8266 act 17 18 const char\* wifissia = "Tenda\_8060A0": //Replace with SSID of WIF router provi 19 const char\* pass = "12345678"; //Password of WIFI router providing inte Done uploading

RACE +0.000 Received full packet: 011202000

ard resetting via RTS pin...

NodeMCU 1.0 (ESP-12E Module) on /dev/cu.SLAB\_USBtoUART

- With your Arduino board connected, and the Blink sketch open, press the 'Upload' button
- After a second, you should see some LEDs flashing on your Arduino, followed by the message
   'Done Uploading' in the status bar of the Blink sketch.
- If everything worked, the on-board LED on your Arduino should now be blinking!

## **Serial Monitor**



- The serial monitor is the 'tether' between the computer and your Arduino it lets you send and receive text messages.
- First **select the port** (go to Tools -> Port: ) to which the board is connected then click the icon of **Serial Monitor** on the top right side of the Arduino IDE



|                          |                                                                                                                                                                                                                                                                                                                                                                                                                              | /dev/cu.SLAB_USBtoUART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                              | Sen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d  |
| Serial Monitor<br>output | 14:39:43.602 -> Sta<br>14:39:44.864 -> Vib<br>14:39:59.873 -> Sta<br>14:39:59.9873 -> Sta<br>14:39:59.9873 -> Sta<br>14:39:59.945 -> Sta<br>14:40:32.597 -> Sta<br>14:40:32.630 -> Sta<br>14:40:32.630 -> Sta<br>14:40:32.665 -> Sta<br>14:40:32.702 -> Sta<br>14:40:32.770 -> Sta<br>14:40:32.770 -> Sta<br>14:40:32.770 -> Sta<br>14:40:32.770 -> Sta<br>14:40:32.770 -> Sta<br>14:40:34.148 -> LDR<br>14:40:34.148 -> Sen | Ations connected = 4<br>pration Sensor data: 29 Sent to ThingSpeak server<br>ations connected = 4<br>ations connected = 4<br>ations connected = 4<br>mperature: 23.30 degree celcius, Humidity: 70.00%. Sent to ThingSpeak Server<br>ations connected = 4<br>ations connected = 4<br>Sensor data value: 1024<br>ht to ThingSpeak Server<br>Show timestamp | ıt |

#### **Serial Plotter**



PWMGenerationSineTriangularWave | Arduino 1.8.19 (Windows Store 1.8.57.0)



- Can use Serial Plotter to plot the output signal
- See the below image for example



#### **How to Install Sensor Libraries**



- Let we will use DHT11 sensor for which we need DHT.h header file
- So, this header file needs to be installed first.
- Install Using the Library Manager
  - click to Sketch menu -> Include Library -> Manage Libraries
  - Search for "**DHT**" on the Search box and install the DHT library from **Adafruit**.

| • •                                                           | Library Manager                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                                                          | All O Topic All O DHT                                                                                                                                                                                                                                                                                                     |
| EduIntr<br>Library<br>basic con<br>Arduino<br><u>More inf</u> | ro by Arduino LLC<br>v used for super-fast introduction workshops Is intended to be used with Arduino UNO / MICRO / MEGA / NANO / MKR and a set of<br>pomponents (led, button, piezo, LM35, thermistor, LDR, PIR, DHT11, and servo) as a way to introduce people to the basic aspects of<br>during short workshops.<br>fo |
|                                                               | Version 0.0.7 🗘 Install                                                                                                                                                                                                                                                                                                   |
| DHT ser<br>Arduing<br>More inf                                | o library by Adafruit Version 1.3.4 INSTALLED<br>o library for DHT11, DHT22, etc Temp & Humidity Sensors Arduino library for DHT11, DHT22, etc Temp & Humidity Sensors<br>fo                                                                                                                                              |
| DHT ser<br>Arduinc<br>correct f<br><u>More inf</u>            | o ESP library for ESPx by beegee_tokyo<br>o ESP library for DHT11, DHT22, etc Temp & Humidity Sensors Optimized libray to match ESP32 requirements. Last changes: Use<br>field separator in keywords.txt.<br>fo                                                                                                           |
| Grove T                                                       | Temperature And Humidity Sensor by Seeed Studio                                                                                                                                                                                                                                                                           |
|                                                               | Close                                                                                                                                                                                                                                                                                                                     |

#### Cont...



• After installing the DHT library from Adafruit, install "Adafruit Unified Sensor" libraries.

| dafruit TSL2561 by Adafruit<br>Inified sensor driver for Adafruit's TSL2561 breakouts Unified sensor driver for Adafruit's TSL2561 breakouts<br>Iore info                                                        |       |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| Version 1.0.3 🗘 Insta                                                                                                                                                                                            | all   |  |  |  |
| Adafruit Unified Sensor by Adafruit Version 1.0.3 INSTALLED<br>Required for all Adafruit Unified Sensor based libraries. A unified sensor abstraction layer used by many Adafruit sensor libraries.<br>More info |       |  |  |  |
|                                                                                                                                                                                                                  | Close |  |  |  |

- There exist other methods for installing libraries
  - Importing a .zip Library
    - Sketch --> Include Library --> Add .Zip Library
  - Manual Installation of Library
    - Download the library as .Zip --> extract it
    - Place the files in File --> Preferences --> Sketchbook location
    - Restart Arduino IDE



- See the Demo using Arduino UNO circuit board
- 1) Blink the in-built LED of Arduino Board
- 2) Blink the additionally attached LEDs

# **Blink In-built LED Continuously**



- First upload the bare minimum example:
  - ✓ Files -> Examples -> Basics -> BareMinimum
- Output:
  - ✓ In-built LED will glow continuously



# **Blink In-built LED Periodically**



- First upload the bare minimum example:
  - ✓ Files -> Examples -> Basics -> BareMinimum
- Output:
  - ✓ In-built LED will glow continuously
- Then, upload the blink example:
  - Files -> Examples -> Basics -> Blink
- Output:
  - In-built LED will glow periodically

| New         | Ctrl+N           |                             |   |              |         |
|-------------|------------------|-----------------------------|---|--------------|---------|
| Open        | Ctrl+O           |                             |   |              |         |
| Open Recent | :                |                             |   |              |         |
| Sketchbook  |                  |                             |   |              |         |
| Examples    | 1                | Δ                           |   |              |         |
| Close       | Ctrl+W           | Built-in Examples           |   |              |         |
| Save        | Ctrl+S           | 01.Basics                   | 2 | AnalogRead   | Jerial  |
| Save As     | Ctrl+Snift+S     | 02.Digital                  | ; | BareMinimu   | m       |
| D           | Chill Children D | 03,Analog                   |   | Blink        |         |
| Page Setup  | Ctrl+Shift+P     | 04.Communication            |   | DigitalReadS | erial   |
| Print       | Ctrl+P           | 05.Control                  | 2 | Fade         |         |
| Preferences | Ctrl+Comma       | 06.Sensors                  | 2 | ReadAnalog   | Voltage |
| 0           | Chillio O        | 07.Display                  | > |              |         |
| Quit        | Ctil+Q           | 08.Strings                  | > |              |         |
|             |                  | 09.USB                      | > |              |         |
|             |                  | 10.StarterKit_BasicKit      | > |              |         |
|             |                  | 11.ArduinoISP               | > |              |         |
|             |                  | Examples for any board      |   |              |         |
|             |                  | Adafruit Circuit Playground | > |              |         |
|             |                  | Bridge                      | > |              |         |
|             |                  | Esplora                     | > |              |         |
|             |                  | Ethernet                    | > |              |         |
|             |                  | Firmata                     | > |              |         |
|             |                  | GSM                         | > |              |         |
|             |                  | LiquidCrystal               | > |              |         |
|             |                  | Robot Control               | > |              |         |
|             |                  | Robot Motor                 | > |              |         |
|             |                  | SD                          | > |              |         |
|             |                  | Servo                       | > |              |         |
|             |                  | •                           |   |              |         |

#### **Blink External LED**





#### **Demo on LED Blink**





#### **Lessons Learned**



- ✓ What is Arduino
- ✓ Types of Arduino Board
- ✓ Arduino UNO pin diagram
- ✓ Arduino in IoT
- ✓ Arduino IDE
- ✓ Built-in Sketch in IDE
- ✓ Compiling and Uploading a sketch using IDE
- ✓ LED blink program and system setup



# Thanks!



#### Which is better? ATmega328P vs STM32 vs MSP430



|                   | ATmega328P                                                                | STM32                                                                                       | MSP430                                            |
|-------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------|
| Brand             | ATmel (now<br>MicroChip)                                                  | Cortex<br>(STMicroelectronics)                                                              | Texas Instruments                                 |
| Cost              | Low                                                                       | High                                                                                        | Low                                               |
| Architecture      | Advanced RISC architecture                                                | Power Architecture<br>technology designed for<br>embedded applications                      | Older, von-Neumann<br>architecture                |
| Power Consumption | Low                                                                       | Medium                                                                                      | Low                                               |
| Performance       | Medium, suitable<br>for complex<br>projects                               | High, fast processing<br>speed, Running 32 bit<br>ARM processor core<br>with sufficient RAM | Low, more suitable<br>for only simple<br>projects |
| Ease of Usage     | Easy to use, 8 bit<br>and high<br>compatibility<br>with Arduino<br>boards | Complicated due to its<br>nature of being a 32 bit<br>microcontroller                       | Complex relative to<br>Arduino boards             |