CS578: Internet of Things

Smart Home Monitoring Using ESP8266 and Webserver

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in , URL: http://manaskhatua.github.io/

"Try not to become a man of success. Rather become a man of value." - Albert Einstein

System Diagram

Physical Setup

ThingSpeak cloud server accessing from a

Laptop/PC/Smartphone

Router Configuration To Connect with IITG Internet

Router Configuration

- > This is TP-Link WiFi Router
- ESP8266 (local server) will connect to this WiFi AP
- Sensor data will be uploaded to ThingSpeak server through this WiFi AP.
- > Login TP-Link WiFi using given IP (**192.168.0.1**) and password written on its label.

Do the following:

- Go to Quick Setup and click on Next.
- Choose Operation Mode as Wireless Router and click on Next.
- Select WAN Connection Type as Static IP and click on Next.
- Set the Static IP, Subnet Mask, Default Gateway, Primary DNS Server, Secondary DNS Server and click on Next.
- Select the radio bands (2.4 GHz and/or 5 GHz) and click on Next.
- Setup the Wireless radio bands selected above and click on Next.
- Confirm the setup by clicking on Save. The router reboots and reconnects.

	AC750 Wireless Dual Band Router Model No. Archer C20	
Status		
Quick Setup		
Operation Mode	Quick Setup - Static IP	
Network		_
Dual Band Selection	Please enter the basic parameter settings provided by your ISP. If basic parameters are unknown, please contact ISP.	
Wireless 2.4GHz	IP Address: 172 16 117 102	
Wireless 5GHz	Subpet Mack: 255 256 240 0	
Guest Network	Subilet Mask. 255.255.248.0	
DHCP	Default Gateway: 172.16.112.1	
Forwarding	Primary DNS Server: 172.17.1.1	
Security	Secondary DNS Server: 172.17.1.2 (optional)	
Parental Controls		
Access Control	Back	
Advanced Routing		
	4	

	AC750 Wireless Dual Band Router Model No. Archer C20
Status	
Quick Setup	
Operation Mode	Quick Setup - Wireless Dual Band Selection
Network	
Dual Band Selection	Please select or clear the check box to enable or disable a given radio band.
Wireless 2.4GHz	2.4GHz
Wireless 5GHz	✓ 5GHz
Guest Network	
DHCP	
Forwarding	Back Next
Security	

14-08-2024

Dr. Manas Khatua

Ptp-link	AC750 Wireless Dual Band Router Model No. Archer C20	
Status		
Quick Setup		
Operation Mode	Quick Setup - Confirm	
Network		
Dual Band Selection	The Quick Setup is complete. Please confirm all parameters	s below. Click BACK to modify any settings or click SAVE to save and apply your configurations.
Wireless 2.4GHz	Parameters Summary:	
Wireless 5GHz	Connection Type:	Static IP
Guest Network	IP Address:	172.16.117.192
DHCP	Subnet Mask:	255.255.248.0
Forwarding	Gateway:	172.16.112.1
Security	DNS Server:	172.17.1.1,172.17.1.2
Parental Controls	Wireless 2.4GHz:	Enabled
Access Control	Wireless Network Name(SSID):	TP-Link_A522
Advanced Routing	Channel:	Auto
Bandwidth Control	Mode:	11bgn mixed
IP & MAC Binding	Channel Width:	Auto
Dynamic DNS	Security:	WPA2-Personal
IPv6	Wireless Password:	*****
System Tools	Wireless 5GHz	Enabled
Logout	Wireless Network Name(SSID):	TP-Link_A522_5G
	Channel:	Auto
	Mode:	11a/n/ac mixed
	Channel Width:	Auto
	Security:	WPA2-Personal
	Wireless Password:	39508324
		Back Save

Dr. Manas Khatua

Ptp-link	AC750 Wireless Dual Band Router Model No. Archer C20
Status	Subnet Mask: 255.255.0
Quick Setup	
Operation Mode	
Network	Wireless 2.4GHZ
Dual Band Selection	Operation Mode: Router
Wireless 2.4GHz	Wireless Radio: Enabled
Wireless 5GHz	Name(SSID): TP-Link_A522
Guest Network	Mode: 11bgn mixed
DHCP	Channel: Auto(Channel 4)
Forwarding	Channel Width: Auto
Security	MAC Address: E0.40.00.01.A5.22
Parental Controls	
Access Control	Wireless 5CHz
Advanced Routing	WIGGS SCI2
Bandwidth Control	Operation Mode: Router
IP & MAC Binding	Wireless Radio: Enabled
Dynamic DNS	Name(SSID): TP-Link_A522_5G
IPv6	
System Tools	Channet: Auto(Liannet 149)
Logout	Mac Address - F8 48:88:61:45:21
	WAN
	MAC Address: E8:48:88:61:A5:23
	IP Address: 172.16.117.192(Static IP)
	Subnet Mask: 255.255.248.0
	Default Gateway: 172.16.112.1
	DNS Server: 172.17.1.1 172.17.1.2
	Ethernet
	Internet: 100Mbps full duplex
	LAN2. Unpluged
	LAN4: Unplugged
	System Up Time: 0 day(s) 00:46:11 Refresh

Dr. Manas Khatua

Connecting with Internet

User Authentication Required				
Use IITG Credentials to Login Username				
Password				
LOGIN Forgot Password ? Reset Here				

• You should be able to access Internet in your Mobile/Laptop using TP-Link WiFi AP

Cloud Server Configuration to Access Web Service

Configure to use Cloud Server

- We use ThingSpeak server <u>http://www.thingspeak.com</u>
- First create an user account
- Then create a channel on the ThingSpeak to upload the data

nttps://tningspeak.com/channels

Private

Private

Private

Public

Public

Public

LED Control from Web

Settings

Settings

Settings

Sharing

Sharing

Sharing

Monitoring Four sensors in Star Topology

API Keys

API Keys

API Keys

Data Import / Export

Data Import / Export

Data Import / Export

2019-07-09

2019-07-12

2019-07-09 11:30

2019-07-12 06:53

Learn to create channels, explore and transform data.

Learn more about ThingSpeak Channels.

Examples

channels with that tag.

- Arduino
- Arduino MKR1000
- ESP8266
- Raspberry Pi
- Netduino Plus

Upgrade

Need to send more data faster?

Need to use ThingSpeak for a commercial proiect?

□ ThingSpeak™	Channels -	Apps +	Community	Support	- Commercial Use How to Buy Account - Sign Out						
Channel ID	814887				Channel Settings						
Name	DEMO 2				Channel Name: Enter a unique name for the ThingSpeak channel.						
Description	Getting different	sensors data)	1,	 Description: Enter a description of the ThingSpeak channel. Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak channel can have up to 8 fields. 						
Field 1	Temperature				• Metadata: Enter information about channel data, including JSON, XML, or CSV data.						
					• Tags: Enter keywords that identify the channel. Separate tags with commas.						
Field 2	Humidity				 Link to External Site: If you have a website that contains information about your ThingSpeak channel, specify the URL. 						
Field 3	LDR sensor				Show Channel Location:						
Field 4	Pulse rate				 Latitude: Specify the latitude position in decimal degrees. For example, the latitude of the city of London is 51.5072. 						
Field 5	Vibration Sensor				 Longitude: Specify the longitude position in decimal degrees. For example, the longitude of the city of London is -0.1275. 						
Field 6					• Elevation: Specify the elevation position meters. For example, the elevation of the city of London is 35.052.						
Field 7					 Video URL: If you have a YouTube[™] or Vimeo[®] video that displays your channel information, specify the full path of the video URL. 						
Field 8					 Link to GitHub: If you store your ThingSpeak code on GitHub[®], specify the GitHub repository URL. 						
Metadata					Using the Channel						
Tags				2	You can get data into a channel from a device, website, or another ThingsSpeak channel. You can then visualize data and transform it using ThingSpeak Apps .						
-					See Tutorial: ThingSpeak and MATLAB for an example of measuring dew point from a						

https://thingspeak.com/channels

⊂ ThingSpeak ™	Channels 🗸	Apps 🗸	Community	Support 🗸			Commercial Use	How to Buy	Account -	Sign Out
My Channel	S	ch by tag				۹	Collect data from anothe	a in a ThingSpeak er channel, or froi	channel from a o m the web.	device,
Name				Created	Updated		Click New C channel.	hannel to create a	a new ThingSpea	ak
 Temperature & H Private Public Settings Monitoring Four settings Private Public Settings 	Sharing API P Sensors in St Sharing API P	nitoring Keys Data Im tar Topolo Keys Data Im	nport / Export P GY nport / Export	2019-07-09	2019-07-09 00 2019-07-09 1	6:44 1:30	Click on the entries in th channels wi Learn to Cre data. Learn more	e column headers nat column or clic ith that tag. eate channels, e about ThingSpe	of the table to so k on a tag to sho xplore and trans eak Channels.	ort by the w form
LED Control from Private Public Settings	Sharing API H	Keys Data Im	nport / Export	2019-07-12	2019-07-12 0	6:53	Examp • Arduin • Arduin • ESP820 • Raspbo • Netdui	o o MKR1000 66 erry Pi ino Plus		
							Upgrad	de		

Need to send more data faster?

Need to use ThingSpeak for a commercial proiect?

Create Channel Display

API Key and Channel ID

- To send data to ThingSpeak, we need unique write API key and Channel ID, which will be used later in code to upload the data to ThingSpeak website
- Click on "API Keys" button to get your unique "Write API Key"
- "Channel ID" is also given on the top

IoT Network Configuration

IoT Network Configuration

- There are total five ESP8266
 - one is acting as server,
 - other four as clients in local network.

- ESP1- ESP8266 acting as local server
- ESP2- ESP8266 with Light sensor
- ESP3- ESP8266 with Pulse sensor
- ESP4- ESP8266 with vibration sensor
- ESP5- ESP8266 with temperature & humidity sensor

• Note: Unique ID for each ESP will be needed in programming

Sensor Configuration

ESP8266 with LDR Sensor

- Connect VCC pin of LDR sensor
- Connect GND pin of LDR sensor
- Connect DATA OUT pin of LDR sensor with A0 pin of ESP2.

ESP8266 with Pulse Sensor

with 3V3 pin of ESP2 with GND pin of ESP2

- Connect VCC pin of pulse sensor with 3V3 pin of ESP3
- Connect GND pin of pulse sensor
 - Connect SIGNAL pin of pulse sensor with A0 pin of ESP3

with GND pin of ESP3

ESP8266 with Vibration Sensor

- Connect VCC pin of vibration sensor
- Connect GND pin of vibration sensor
- Connect DATA OUT pin of vibration sensor with A0 pin of ESP4

Connect VCC pin of DHT11

with VIN pin of ESP4

with GND pin of ESP4

- Connect DATA OUT pin of DHT11 with D3 pin of ESP5
- Connect GND pin of DHT11

with VIN pin of ESP5

with GND pin of ESP5

ESP8266

Arduino Tool Configuration

Configure Arduino IDE

- Download and Install Arduino IDE <u>https://www.arduino.cc/en/Main/Software</u>
- When the Arduino IDE first opens, this is what you should see:

• • •	sketch_jul11a Arduino 1.8.9	
		Ø
sketch_jul11a		-
1 void setup(2 // put you 3 4 } 5 6 void loop() 7 // put you 8 9 }) { ur setup code here, to run once: { ur main code here, to run repeatedly:	
	0	
80 MHz, Flash, Disab	led, All SSL ciphers (most compatible), 4M (no SPIFFS), v2 Lower Memory, Disabled, None, Only Sketch, 115200 on /dev/cu.SLAB_USBtoUA	RT2

Install ESP8266 Board in IDE

- Go to File --> Preferences
- Enter the below URL into Additional Board Manager URLs field and press the "OK" button <u>http://arduino.esp8266.com/stable/package_esp8266com_index.json</u> OR <u>https://github.com/esp8266/Arduino/releases/download/2.3.0/package_esp8266com_index.json</u>

Preferences	×				
Sketchbook location:					
C: \Users \Rui Santos \Documents \Arduino Browse					
Editor language: System Default \checkmark (requires restart of Arduino)					
Editor font size: 12					
Show verbose output during: compilation upload					
Compiler warnings: None V					
Display line numbers					
Enable Code Folding					
Verify code after upload					
Use external editor					
Check for updates on startup					
Update sketch files to new extension on save (.pde -> .ino)					
Save when verifying or uploading					
Additional Boards Manager URLs: http://arduino.esp8266.com/stable/package_esp8266com_index.json					
More preferences can be edited directly in the file					
C:\Users\Rui Santos\AppData\Roaming\Arduino15\preferences.txt					
(edit only when Arduino is not running)					
OK Cancel					

- Go to Tools > Board > Board Manager
- Scroll down, select the ESP8266 board menu and install "esp8266 by ESP8266 Community"

Edison. More info
AMEL-Tech Boards by AMEL Technology Boards included in this package: SmartEverything Fox. Online help More info
esp8266 by ESP8266 Community Boards included in this package: Generic ESP8266 Module, Olimex MOD-WIFI-ESP8266(-DEV), NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0 (ESP-12E Module), Adafruit HUZZAH ESP8266 (ESP-12), SweetPea ESP-210. Online help More info

	Tools Help				
	Auto Format	Ctrl+T			
	Archive Sketch				
1	Fix Encoding & Reload				
	Serial Monitor	Ctrl+Shift+M			
	Serial Plotter	Ctrl+Shift+L			
	WiFi101 Firmware Updater				
	Board: "NodeMCU 1.0 (ESP-12E Module)"	3	A		
	CPU Frequency: "80 MHz"	3	LilyPad Arduino		
	Flash Size: "4M (3M SPIFFS)"	2	Arduino Pro or Pro Mini		
	Upload Speed: "115200"	2	Arduino NG or older		
	Port	3	Arduino Robot Control		
	Get Board Info		Arduino Robot Motor		
			Arduino Gemma		
	Programmer: "AVRISP mkll"	,	ESP32 Arduino		
	Burn Bootloader		ESP32 Dev Module		
			Electronic SweetPeas - ESP320		
		WEMOS LoLin32			
			ESPea32		
			Noduino Quantum		
			Node32s		
~		- \	ESP8266 Modules		
	(ESP-IZE IVIOAUI	2)	Generic ESP8266 Module		
			Generic ESP8285 Module		
			ESPDuino (ESP-13 Module)		
			Adafruit HUZZAH ESP8266		
			ESPresso Lite 1.0		
			ESPresso Lite 2.0		
			Phoenix 1.0		
			Phoenix 2.0		
			NodeMCU 0.9 (ESP-12 Module)		
	_		NodeMCU 1.0 (ESP-12E Module)		

- Select the appropriate board
 - Go to Tools >Board > NodeMCU 1.0 (ESP-12E Module)
- Finally, re-open the Arduino IDE

Install Sensor Libraries

• In this demo, we use DHT11 sensor for which we will be using DHT.h header file in the code. So, this header file should be installed.

• Install Using the Library Manager

- click to Sketch menu then Include Library > Manage Libraries
- Search for "**DHT**" on the Search box and install the DHT library from **Adafruit**.

• •	Library Manag	er	
Type All 🗘 Topic		тнс	
EduIntro by Arduino LLC Library used for super-fast introductio basic components (led, button, piezo, LM3 Arduino during short workshops. <u>More info</u>	n workshops Is intended to be used wi 5, thermistor, LDR, PIR, DHT11, and se	ith Arduino UNO / MICRO / MEGA / NANO / MK rvo) as a way to introduce people to the basic Version 0.0.7	R and a set of aspects of Install
DHT sensor library by Adafruit Version Arduino library for DHT11, DHT22, etc More info	1.3.4 INSTALLED Femp & Humidity Sensors Arduino lib	vrary for DHT11, DHT22, etc Temp & Humidity	Sensors
DHT sensor library for ESPx by beegee Arduino ESP library for DHT11, DHT22, correct field separator in keywords.txt. <u>More info</u>	_tokyo etc Temp & Humidity Sensors Optim	nized libray to match ESP32 requirements. Last	changes: Use
Grove Temperature And Humidity Sense Arduino library to control Grove Tempe	or by Seeed Studio Trature And Humidity Sensor, it conf	tains chip DHT11 AM2302. This temperature	& humidity
			Close

• After installing the DHT library from Adafruit, install "Adafruit Unified Sensor" libraries.

Adafruit TSL2561 by Adafruit Unified sensor driver for Adafruit's TSL2561 breakouts Unified sensor driver for Adafruit's TSL2561 breakouts More info						
	Version 1.0.3	Install				
Adafruit Unified Sensor by Adafruit Version 1.0.3 INSTALLED Required for all Adafruit Unified Sensor based libraries. A unified sensor abstraction layer use More info	d by many Adafruit sensor lil	braries.				
		Close				

- There exist other methods for installing libraries
 - Importing a .zip Library
 - Sketch --> Include Library --> Add .Zip Library
 - Manual Installation of Library
 - Download the library as .Zip --> extract it
 - Place the files in File --> Preferences --> Sketchbook location
 - Restart Arduino IDE

MCU Programming

ESP8266 with Local Server

For **ESP1**, write the following code in the Arduino IDE and save as **Local_Server_ESP1.ino** Install **ThingSpeak.h** library. Change the **red colored text** in code according to your setup.

```
#include <ESP8266WiFi.h> //Including ESP8266 library
#include <ESP8266WebServer.h> //Including ESP8266WebServer library for web server
//Including ThingSpeak library
IPAddress IP(172,16,117,192); //Static IP address of local server
IPAddress gateway(172,16,112,1); //Gateway of the network
IPAddress mask(255, 255, 248, 0); //Subnet mask of the network
WiFiClient client;
WiFiServer server(80);
```

unsigned long myChannelNumber = 2244718; //Replace with channelID of ThingSpeak channel ID const char * myWriteAPIKey = "T4N14GFNKOPDWIWL"; //Replace WriteAPIKey of channel

```
const char* softAPssid = "ESP1_Server";
const char* password = "12345678";
```

```
//SSID of the hotspot of ESP8266 acting as local server
//Password of the hotspot of ESP8266 acting as local server
```

```
const char* wifissid = "TP-Link_A522";
const char* pass = "12345678";
```

//Replace with SSID of WIFI router providing internet access
//Password of WIFI router providing internet access

void setup() {

```
WiFi.mode(WIFI AP STA);
                                        //station mode and access point mode both at the same time
Serial.begin(9600);
                                        //Serial communication at baud rate of 9600 for debugging purpose
delay(100);
Serial.println(WiFi.getMode());
Serial.print("Configuring SoftAP....");
Serial.println(WiFi.softAPConfig(IP, gateway, mask)? "Ready" : "Failed");
delay(10);
Serial.println("Setting SoftAP...");
Serial.println(WiFi.softAP(softAPssid, password));
delay(10);
                                                                         •
Serial.println(WiFi.softAPIP());
delay(500);
WiFi.begin(wifissid, pass);
while(WiFi.status()!=WL CONNECTED) {
 Serial.print(".");
 delay(500);
Serial.print("Connected to Wifi with ssid ");
Serial.println(wifissid);
Serial.print("WiFi IP address: ");
Serial.println(WiFi.localIP());
                                        // WIFI router IP address
ThingSpeak.begin(client);
server.begin();
                                        //Start local server
```

- Two functions exist in the programme: setup () and loop ()
 - setup(): This function runs once when FSP first boots
 - **loop():** This function reads the LDR sensor value and connects to local server then send sends data to local server

String temp = client.readStringUntil('\r'); //Reads the temperature value String Humidity = client.readStringUntil('\r'); //Reads the humidity value //Upload the temp value to ThingSpeak server as first field of channel

ThingSpeak.writeField(myChannelNumber, 1, temp, myWriteAPIKey); delay(15000); //Wait for 15 sec after one entry //Upload the humidity value to ThingSpeak server as second field of channel

```
ThingSpeak.writeField(myChannelNumber, 2, Humidity, myWriteAPIKey);
Serial.print("Temperature: ");
Serial.print(temp);
Serial.print(" degree celsius, Humidity: ");
Serial.print(Humidity);
Serial.print("%. ");
Serial.println("Sent to ThingSpeak Server...");
```



```
if(select fun=="2") {
                                                       //If ESP2 sends the data
    String LDRval = client.readStringUntil('r');
                                                       //Reads light sensor value
                           //Upload the light sensor value to ThingSpeak server as third field of channel
    ThingSpeak.writeField(myChannelNumber, 3, LDRval, myWriteAPIKey);
    Serial.print("LDR sensor data value: ");
    Serial.println(LDRval);
    Serial.println("Sent to ThingSpeak Server...");
if(select fun=="3") {
                                                       //If ESP3 sends the data
    String pulseRate = client.readStringUntil('\r');
                                                       //Reads pulse rate
                            //Upload the pulse rate to ThingSpeak server as fourth field of channel
    ThingSpeak.writeField(myChannelNumber, 4, pulseRate, myWriteAPIKey);
    Serial.print("Pulse rate: ");
    Serial.print(pulseRate);
    Serial.println(" BPM. Sent to ThingSpeak Server..");
  if(select fun=="4"){
                                                       //If ESP4 sends the data
    String Vibval = client.readStringUntil('r');
                                                      //Reads vibration sensor data
                           //Upload the vibration sensor data value to ThingSpeak server as fifth field of channel
    ThingSpeak.writeField(myChannelNumber, 5, Vibval, myWriteAPIKey);
    Serial.print("Vibration Sensor data: ");
    Serial.print(Vibval);
    Serial.println(" Sent to ThingSpeak server..");
  delay(15000);
                           //waits for 15 secs after each transmission
```

ESP8266 with LDR Sensor

For ESP2, write the following code in the Arduino IDE and save as LDR_client.ino

```
#include<ESP8266WiFi.h> // Including ESP8266 library
char ssid[]="ESP1_Server"; //Network ssid of hotspot of local server
char pass[]="12345678"; // Password of hotspot of local server
int val;
int LDRpin = A0; //LDR Pin Connected to A0 pin
IPAddress server(172,16,117,192); // IP address of local server
WiFiClient client;
```

- Change the IP address of Local Server (i.e. ESP1)
- Change the SSID and Password of WiFi AP hosted in Local Server
- Two functions exist in the programme: setup () and loop ()
 - setup(): This function runs once when ESP first boots
 - **loop():** This function reads the LDR sensor value and connects to local server then send sends data to local server

void setup()

{

```
Serial.begin(9600);
                                  // Serial communication at baud rate of 9600 for debugging purpose
delay(10);
WiFi.mode(WIFI STA);
                                  // ESP8266 in station mode
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, pass);
Serial.println();
while (WiFi.status() != WL CONNECTED)
  Serial.print(".");
  delay(500);
Serial.println();
Serial.println("WiFi connected");
Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
Serial.println("MAC:" + WiFi.macAddress());
Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr());
```

// MAC address of access point

}

void loop()

```
val = analogRead(LDRpin);
if(client.connect(server,80))
{
    client.print("2\r");
    Serial.print("LDR sensor value: ");
    Serial.println(val);
    String LDRval = String(val);
    LDRval += "\r";
    client.print(LDRval);
    Serial.println("Sent to Local Server..");
    delay(15000);
  }
  client.stop();
}
```

// Reads the light sensor value
// Connect to local server

// before sending data first send ESP8266 ID as 2

// Add end delimiter
// Send to local server

ESP8266 with Pulse Sensor


```
// Pulse sensor input pin A0
#define pulsePin A0
                                  // Including ESP8266 library
#include<ESP8266WiFi.h>
char ssid[] = "ESP1 Server";
                                  // Replace with SSID of hotspot of local server
char pass[] = "<mark>12345678</mark>";
                                  // Replace with password of hotspot of local server
 IPAddress server(172,16,117,192);
                                              // IP address of local server
                                                                                For ESP3, write the
WiFiClient client:
                                                                                following code in the
int rate[10];
                                   // array to hold last ten IBI value
                                                                                Arduino IDE and save as
unsigned long sampleCounter = 0; // used to determine pulse timing
                                                                                Pulse client.ino
unsigned long lastBeatTime = 0; // used to find IBI
unsigned long lastTime = 0, N;
int BPM = 0;
                       // int that holds raw analog in 0. updated every 2mS
                       // int that holds time interval between beats! Must be seeded!
int IBI = 0;
                       // used to find peak in pulse wave, seeded
int P = 512;
                       // used to find trough in pulse wave, seeded
int T = 512;
int thresh = 512:
                      // used to find instant moment of heart beat, seeded
int amp = 100;
                       // used to hold amplitude of pulse waveform, seeded
int Signal;
                       // holds incoming raw data
boolean Pulse = false:
                                  // "True" when heartbeat is detected. "False" when not a "live beat".
boolean firstBeat = true;
                                  // used to seed rate array so we startup with reasonable BPM
                                  // used to seed rate array so we startup with reasonable BPM
boolean secondBeat = true;
boolean QS = false;
                                  // Becomes true when ESP8266 finds a beat
```


void setup()

```
Serial.begin(9600);
                                   // Serial communication at baud rate of 9600 for debugging purpose
delay(10);
WiFi.mode(WIFI STA);
                                   // ESP8266 in station mode
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, pass);
Serial.println();
while (WiFi.status() != WL CONNECTED)
 Serial.print(".");
 delay(500);
Serial.println();
Serial.println("WiFi connected");
Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
Serial.println("MAC:" + WiFi.macAddress());
Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr());
                                                           // MAC address of access point
```


void loop(){

```
if (QS == true){
   if (client.connect(server, 80)){
    client.print("3\r");
    String pulseRate = String(BPM);
    pulseRate +="\r";
    Serial.print("Pulse rate: ");
    Serial.print(BPM);
    Serial.println(" BPM.");
    client.print(pulseRate);
    Serial.println("Sent to local server..");
  QS = false;
   client.stop();
   delay(15000);
 else if(millis() >= (lastTime + 2)) {
   readPulse();
   lastTime = millis();
```

//if ESP8266 finds a beat
// Connect to local server
// before sending data first send ESP8266 ID as 3
// Convert into string
// Add "r" as end delimiter

// send data to local server


```
void readPulse() {
 Signal = analogRead(pulsePin);
                                          //Read pulse sensor value
                                          // Keeps track of the time in mS
 sampleCounter += 2;
 int N = sampleCounter - lastBeatTime; // Monitor the time since the last beat to avoid noise
 detectSetHighLow();
                                          // find the peak and trough of the pulse wave
                                          // Now it's time to look for the heart beat
                                          // signal surges up in value every time there is a pulse
 if(N > 250){
                                          // avoid high frequency noise
   if((Signal > thresh) \&\& (Pulse == false) \&\& (N > (IBI/5)*3))
    pulseDetected();
  }
 if (Signal < thresh && Pulse == true) {
   Pulse = false:
   amp = P - T;
                                                      void detectSetHighLow() {
   thresh = amp / 2 + T;
                                                        if (Signal < thresh && N > (IBI/5)^* 3)
   P = thresh;
                                                                    // avoid dichrotic noise by waiting 3/5 of last IBI
   T = thresh;
                                                          if (Signal < T) {
                                                                                  // T is the trough
 if (N > 2500) {
                                                            T = Signal;
                                                                                  // Keep track of lowest point in pulse wave
   thresh = 512;
   P = 512;
   T = 512;
                                                        if (Signal > thresh && Signal > P) // thresh condition helps avoid noise
   lastBeatTime = sampleCounter;
   firstBeat = true;
                                                           P = Signal;
                                                                                  // P is the peak
   secondBeat = true;
                                                                                  // Keep track of highest point in pulse wave
```


void pulseDetected()

```
Pulse = true;
                  // set the pulse flag when there is a pulse
IBI = sampleCounter - lastBeatTime; // time between beats in mS
lastBeatTime = sampleCounter; //keep track of time for next pulse
if (firstBeat)
                         // if it's the first time beat is found
                                                                       BPM = 60000 / runningTotal;
                                                                       // how many beats can fit into a minute? that's BPM!
                         //clear firstBeat flag
 firstBeat = false;
                                                                       QS = true;
 return;
                                                                       if (client.connect(server, 80)) //Connects to local server
if (secondBeat)
                         // if this is second beat
                                                                        client.print("3\r");
                                                                                  //before sending the data sends ESP8266 ID as 3
  secondBeat = false; // clear secondBeat flag
                                                                        String pulseRate = String(BPM);
  for (int i = 0; i <= 9; i++)
                                                                                  // Converting integer data into string
                                                                        pulseRate +="\r";
   rate[i] = IBI;
                                                                                  // Add end Delimiter "r" in the data
                                                                        Serial.print("Pulse rate: ");
                                                                        Serial.print(BPM);
word runningTotal = 0; // clear the runningTotal variable
                                                                        Serial.println(" BPM.");
for (int i = 0; i <= 8; i++) //Shift data in the rate array
                                                                        client.print(pulseRate);
                                                                                                    //sends data to locals server
                                                                        Serial.println("Sent to local server..");
 rate[i] = rate[i + 1]; // and drop the oldest IBI value
 runningTotal += rate[i]; // add up the 9 oldest IBI value
                                                                       client.stop();
                                                                       delay(15000);
rate[9] = IBI;
                      // add the latest IBI to the rate array
                                                                                  // Wait for 15 seconds after each transmission
runningTotal += rate[9]; //add the latest IBI to runningTotal
                                                                    }
runningTotal /= 10;
                          // average the last 10 IBI values
```

ESP8266 with Vibration Sensor

For ESP4, write the following code in the Arduino IDE and save as Vibration_client.ino

#include <ESP8266WiFi.h>
#define vib A0

char ssid[] = "ESP1_Server"; char pass[] = "12345678";

IPAddress server(172,16,117,192); WiFiClient client;

// Including ESP8266 library
// sensor input from A0 pin of ESP8266

//Replace with SSID of hotspot of local server
// Replace with password of hotspot of local server

// IP address of local server

- Change the IP address of Local Server (i.e. ESP1)
- Change the SSID and Password of WiFi AP hosted in Local Server

void setup(){

```
// Serial communication at baud rate of 9600 for debugging purpose
Serial.begin(9600);
delay(10);
                                 // Input of vibration sensor
pinMode(vib, INPUT);
WiFi.mode(WIFI STA);
                                 // ESP8266 as station mode
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, pass);
Serial.println();
while (WiFi.status() != WL CONNECTED) {
  Serial.print(".");
  delay(500);
Serial.println();
Serial.println("WiFi connected");
Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
                                                         // IP address of local server
Serial.println("MAC:" + WiFi.macAddress());
Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr()); // MAC address of access point
```

}


```
void loop(){
  int val = analogRead(vib);
                                    // Reads the sensor value
  if(client.connect(server,80))
                                    //connects to local server
   client.print("4\r");
                                     // Before sending the data sends ESP8266 ID as 4
   Serial.print("Vibration sensor value: ");
   Serial.println(val);
   String data = String(val);
                                    // Converting integer data into string type
   data += "r";
                                    // Add end delimiter "r" in the data
   client.print(data);
                                    // sends sensor data to local server
   Serial.println("Sent to Local server..!!");
   delay(15000);
                                                 // After each transmission wait for 15 seconds
   client.stop();
```

ESP8266 with DHT11 Sensor

For ESP5, write the following code in the Arduino IDE and save as Temp_Humidity_Client.ino

#include <dht.h> #include<esp8266wifi.h> #define DHTPIN 0</esp8266wifi.h></dht.h>	//Including temperature and Humidity sensor library //Including ESP8266 library // D3 pin of ESP8266
char ssid[] = " <mark>ESP1_Server</mark> "; char pass[] = " <mark>12345678</mark> ";	<pre>//Replace with ssid of hotspot of local server // Replace with password of hotspot of local server</pre>
IPAddress server(172,16,117,19 WiFiClient client;	2); // Static IP address of local server. Replace whatever you want.

DHT dht(DHTPIN, DHT11); // Data of DHT11 sensor in D3 pin of ESP8266

- Change the IP address of Local Server (i.e. **ESP1**)
- Change the SSID and Password of WiFi AP hosted in Local Server
- Install the DHT11 library and Adafruit Unified Sensor library for DHT11 sensor

void setup() {

```
//serial communication at baud rate of 9600 for debugging purpose
Serial.begin(9600);
delay(10);
dht.begin();
                                 // start Temperature and Humidity sensor
WiFi.mode(WIFI STA);
                                 // ESP8266 mode as station mode
Serial.print("Connecting to ");
Serial.println(ssid);
WiFi.begin(ssid, pass);
Serial.println();
while (WiFi.status() != WL CONNECTED) {
 Serial.print(".");
 delay(500);
Serial.println();
Serial.println("WiFi connected");
Serial.print("LocalIP:"); Serial.println(WiFi.localIP());
Serial.println("MAC:" + WiFi.macAddress());
Serial.print("Gateway:"); Serial.println(WiFi.gatewayIP());
Serial.print("AP MAC:"); Serial.println(WiFi.BSSIDstr()); // MAC address of access point
```

}


```
void loop() {
  float h = dht.readHumidity();
                                          // Read Humidity value from sensor
  float t = dht.readTemperature();
                                          // Read temp value from sensor
  if(isnan(h) || isnan(t)) {
    Serial.println("Failed to read from DHT sensor");
                                                                      // Error message
    return;
  if(client.connect(server,80))
                                          // Connect to local server
    client.print("5\r");
                                          // before sending the data first send ESP8266 ID as 5
    String temp = String(t);
    temp += "r";
                                          // Add "r" as end delimiter
    client.print(temp);
                                          // send temperature to local server
    Serial.print("Temperature: ");
    Serial.print(t);
    Serial.print(" degree celsius, Humidity: ");
    Serial.print(h);
    Serial.print("%. ");
    String humidity = String(h);
    humidity += "\r";
                                          // Add "r" in data as end delimiter
    client.print(humidity);
                                          // send to Local server
    Serial.println("Sent to local server ");
    delay(15000);
                                          // delay of 15sec after each transmission
  client.stop();
```


Code Compilation and Upload

Code Compilation

temp_client | Arduino 1.8.9 Ø p client 1 #include<DHT.h> //Including temperature and Humidity sensor library 2 #include<ESP8266 library Compile Button 3 4 char sstal = ESPOZOD; //Replace with ssid of hotspot of local server 5 char pass = "12345678"; // Replace with password of hotspot of local server 6 7 IPAddress server(192,168,4,15); // IP address of local server 8 WiFiClient client; 9 // D3 pin of ESP8266 10 #define DHTPIN 0 11 DHT dht(DHTPIN, DHT11); // Data of DHT11 sensor in D3 pin of ESP8266 12 13 void setup(){ Serial.begin(9600); //serial communication at baud rate of 9600 for debugging purpos 14 15 delay(10); dht.begin(); // start Temperature and Humidity sensor 16 WiFi.mode(WIFI_STA); // ESP8266 mode as station mode 17 Serial.print("Connecting to "); 18 19 Serial.println(ssid); 20 WiFi.begin(ssid,pass); Serial println(); 21 while (WiFi state () I- WI CONNECTED) 22 Done compiling. Sketch uses 276220 bytes (26%) of program storage space. Maximum is 1044464 bytes. Global variables use 27012 bytes (32%) of dynamic memory, leaving 54908 bytes for local va cfpShers (most compatible), 4M (no SPIFFS), v2 Lower Memory, Disabled, None, Only Sketch, 115200 on /dev/cu.SLAB_USBtoUART2

Compilation successful message in bottom left corner.

Code Uploading

- Plug in the ESP8266 boards one by one to PC/Laptop via USB cable
- Go to Tool menu, select Board "NodeMCU 1.0 (ESP-12E Module)" and Port "COM3".
- Open the corresponding code and do uploading code in Node MCU.

Note: If COM port is not detected automatically then it is needed to install. Download port drivers from the given link and then install and then restart the system:

<u>https://www.silabs.com/pro</u> <u>ducts/development-</u> <u>tools/software/usb-to-uart-</u> <u>bridge-vcp-drivers</u>

Observe Outputs

Open Serial Monitor

• First **select the port** (go to Tools > Port:) to which the board is connected then click the icon of **Serial Monitor** on the top right side of the Arduino IDE

•••	local_server Arduino 1.8.9
◈◐▤▤ਏ	
local_server	
20	Serial Monitor Button
21 void setup() {	
22 WiFi.mode(WIFI_	AP_STA); //ESP8266 mode as station mode and access point mode both at the same time
23 Serial.begin(96	i00); //Serial communication at baud rate of 9600 for debugging purpose
<pre>24 delay(100);</pre>	
25 Serial.println(WiFi.getMode());

Serial Monitor of Local Server

14:39:43.602 -> Stations connected = 4 14:39:44.864 -> Vibration Sensor data: 29 Sent to ThingSpeak server 14:39:59.873 -> Stations connected = 4 14:39:59.873 -> Stations connected = 4 14:39:59.907 -> Stations connected = 4	
14:39:44.864 -> Vibration Sensor data: 29 Sent to ThingSpeak server 14:39:59.873 -> Stations connected = 4 14:39:59.873 -> Stations connected = 4	
14:39:59.873 -> Stations connected = 4 14:39:59.873 -> Stations connected = 4 14:39:59.907 -> Stations connected = 4	
$14:39:59.873 \rightarrow$ Stations connected = 4 $14:39:59.907 \rightarrow$ Stations connected = 4	
14.39.59 907 -> Stations connected = 4	
THIDIDIDIDI > DUNCTOND CONNECCOM - H	
14:39:59.945 -> Stations connected = 4	
14:40:17.586 -> Temperature: 23.30 degree celcius, Humidity: 70.00%. Sent to ThingSpeak Server	
14:40:32.597 -> Stations connected = 4	
$14:40:32.630 \rightarrow$ Stations connected = 4	
14:40:32.630 -> Stations connected = 4	
14:40:32.665 -> Stations connected = 4	
14:40:32.702 -> Stations connected = 4	
14:40:32.702 -> Stations connected = 4	
14:40:32.735 -> Stations connected = 4	
14:40:32.770 -> Stations connected = 4	
14:40:34.148 -> LDR sensor data value: 1024	
14:40:34.148 -> Sent to ThingSpeak Server	

/dev/cu.SLAB_USBtoUART

•••	/dev/cu.SLAB_USBtoUA	RT8		
			Send	
<pre>{ld0 010 0 \$0 b 00 0 0{0b0 b00nn0\$nn000 " p00 14:19:56.258 -> 14:20:02.041 -> WiFi connected 14:20:02.074 -> LocalIP:192.168.4.115 14:20:02.074 -> MAC:3C:71:BF:32:71:5B 14:20:02.109 -> Gateway:192.168.4.1 14:20:02.142 -> AP MAC:3E:71:BF:32:6E:AD 14:20:02.175 -> Vibration sensor value: 29 14:20:02.175 -> Sent to Local server!! 14:20:17.089 -> Vibration sensor value: 30 14:20:32.108 -> Vibration sensor value: 1013 14:20:32.142 -> Sent to Local server!! 14:20:32.142 -> Sent to Local server!! 14:20:47.104 -> Vibration sensor value: 30</pre>	с\$ {lpOn0 0l00 #n0il0 0p00r	nNO lOOd`O oo\$ o{OOON #O\$rO(0n #0\$001\$00\$00n0	Serial Monitor of ESP4
🗌 Autoscroll 🗹 Show timestamp		Newline ᅌ 9600 bau	d ᅌ Clear output	
Serial Monitor of ESP5	■ ■	/dev/c nnecting to ESP8266 .4.116 :70:77 .4.1 :32:6E:AD .00 degree celcius, Humidity: .00 degree celcius, Humidity: .80 degree celcius, Humidity: .70 degree celcius, Humidity: .70 degree celcius, Humidity: .20 degree celcius, Humidity:	68.00%. Sent to local server 68.00%. Sent to local server 95.00%. Sent to local server 90.00%. Sent to local server 76.00%. Sent to local server 75.00%. Sent to local server 75.00%. Sent to local server	Send Image: Send <t< td=""></t<>

Results & Graphs in Web

- Open the ThingSpeak page and click on **Channels > My channels**
- Now select the channel that is created for this experiment (In this case 'Monitoring Four Sensors in Star Topology').

 https://thingspeak.com/channel 	215									
ൂ ThingSpeak ™ വ	hannels -	Apps 🗸	Community	Support 🗸			Commercial Use	How to Buy	Account -	Sign Out
Ay Channels New Channel	Searc	ch by tag				Q	Help Collect dat. from anoth	a in a ThingSpeak er channel, or fro	channel from a d m the web.	device,
Name			Created	Updated		Click New C channel.	ak			
▲ Temperature & Hum	Temperature & Humidity Monitoring		2019-07-09	2019-07-09 06:4		Click on the entries in t	of the table to so k on a tag to sho	ort by the w		
Private Public Settings Sh	naring API K	leys Data	mport / Export				channels w	ith that tag.	valors and trans	form
Monitoring Four sensors in Star Topology		2019-07-09	2019-07-09 1	1:30) data.					
Private Public Settings Sh	naring API K	eys Data	import / Export				Learn more	about ThingSpe	ak Channels.	
■ LED Control from Web		2019-07-12	2019-07-12 06:53		53 Examples					
Private Public Settings Sh	naring API K	leys Data	mport / Export				• Arduir • Arduir	io Io MKR1000		

- ESP8266
- Raspberry Pi
- Netduino Plus

Upgrade

Need to send more data faster?

Need to use ThingSpeak for a commercial proiect?

• click on 'Private View' to see the uploaded data

• Temperature and Humidity

Light Sensor

Pulse Sensor

Vibration Sensor

Thanks!

