
I2C Protocol
Demo Using NodeMCU and Arduino

CS578: Internet of Things

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

“We suffer as a result of our own actions; it is unfair to blame anybody for it.” – Ma Sarada Devi“We suffer as a result of our own actions; it is unfair to blame anybody for it.” – Ma Sarada Devi23-08-2023 Dr. Manas Khatua 1

mailto:manaskhatua@iitg.ac.in
mailto:manaskhatua@iitg.ac.in

223-08-2023 Dr. Manas Khatua

Bit serial communication concepts

• Serial  one bit at a time

• Most often using logic level signals

• Timing information needs to be shared between sender and receiver
• Timing information: Transition point between bits, duration of a bit

 Two major types of bit serial protocols

 Asynchronous (no shared clock)

 Sender and receiver maintain independent clocks

 e.g. RS-232, USB, UART

 Synchronous (shared clock)

 e.g. SPI, I2C

323-08-2023 Dr. Manas Khatua

Issue in Asynchronous Data Sampling

Source: http://www.quatech.com/support/figures/async1.gif

423-08-2023 Dr. Manas Khatua

I2C Introduction

• I2C – Inter Integrated Circuit

• One of the widely used Serial Communication protocols

• Created by Philips Semiconductor in 1982 (Now it is NXP Semiconductor)

• No license needed since 2006

Source: Embedded Systems Design, by Brock J. LaMeres, Springer Publisher

523-08-2023 Dr. Manas Khatua

I2C Communication Modes

I2C Mode Speed

Standard Mode 100 kbps

Fast Mode 400 kbps

Fast Mode Plus 1 Mbps

High Speed Mode 3.4 Mbps

Ultra-Fast Mode 5 Mbps

Similar in implementation,

with different timing requirements

Requires specific controller code

for high speed transfer

623-08-2023 Dr. Manas Khatua

I2C Physical Layer

• Only two communication lines for all devices on the bus (SDA, SCL)

• Bi-directional communication

• I2C link is half-duplex, means only one device transmits at any given time.

• Allows for multiple controllers and multiple targets

• Both the signal lines (SDA, SCL) are ‘open drain’, thus pull-up resistors are needed

VDD: Voltage

Drain Drain

SDA: Serial Data

SCL: Serial Clock

 Open-drain refers to a type of output which can

 either “pull” the bus down to a voltage (ground, in most cases),

 or "release" the bus and let it be pulled up by a pull-up resistor

 I2C uses an open-drain/open-collector with an input buffer on the same line, which allows a single data line

to be used for bidirectional data flow.

 Open-drain output stage supports multiple drivers on the same signal line using NMOS transistor

723-08-2023 Dr. Manas Khatua

Open-Drain and Push-Pull Configuration

When a pin is configured in output mode

Dr. Manas Khatua 8

Pull Up Resistors

23-08-2023

• Consider the Open-Drain Output Stage:

o If we turn off the NMOS by driving a LOW (0) to its gate, the line is left

floating, which is an unknown logic level.

o If a pull-up resistor it placed on the line, it will pull the resistor to a HIGH (1)

when the NMOS is off.

• Note, here we have an inverted logic scheme where driving a LOW to the NMOS yields

a HIGH on the line, and vice-versa.

LOW (0)

???

OFF LOW (0)

HIGH

(1)

OFF

23-08-2023 Dr. Manas Khatua 8

Dr. Manas Khatua 9

Cont…

23-08-2023

To get back to positive logic, we insert an inverter before the NMOS.

LOW (0) ON

HIGH

LOW (0)

HIGH (1) OFF

LOW

HIGH (1)

Source: Embedded Systems Design, by Brock J. LaMeres, Springer Publisher

Example with LED operation:

23-08-2023 Dr. Manas Khatua 9

Dr. Manas Khatua 10

Cont…

23-08-2023

So, an I2C bus ALWAYS needs external pull-up resistors on each of its lines

23-08-2023 Dr. Manas Khatua 10

I2C Protocol Operation

Master device – the device that

initiates communication and controls

the clock.

Slave device – a device on the bus

that is read or written to, but does

not initiate transmission or provide a

clock.

Slave address – a unique and

predetermined address for each

slave on the bus.

This address is used by the master

to indicate which slave it wants to

communicate with.

Idle – when both SDA and SCL are held high

by the pull-up resistors and no I2C device is

attempting to communicate.

Busy – when devices are driving the bus.

Messages – how I2C information is transferred.

Operation Steps in I2C - 1/12

• SCL and SDA both are in Idle State at the beginning.

Operation Steps in I2C - 2/12

• A master initiates a new message by generating a START(S) condition by pulling SDA

LOW while SCL is still HIGH.

• As soon as the START condition is generated, the SCL will be pulled LOW and start

pulsing to provide the clock for the message.

Operation Steps in I2C - 3/12

• Each clock pulse within the I2C message is numbered by periods.

• Both the master and the slaves count the number of periods that have occurred since the

message started in order to know when certain frames and signals should be present.

Operation Steps in I2C - 4/12

• After the master generates the START condition, it first sends the slave address that

it wishes to communicate with.

• I2C slave addresses can either be 7-bit (default) or 10-bit.

Operation Steps in I2C - 5/12

• After the slave address and read/write signal (1 bit: 0 to write, 1 to read) are sent by the master,

each slave on the bus checks whether it is being addressed.

• Period 9 of the message is reserved for the slave acknowledge (ACK) or no-acknowledge

(NACK) signal.

Operation Steps in I2C - 6/12

• Intended slave will send an ACK signal back to the master by pulling SDA LOW.

• If no device exists with the specified slave address, no device will pull down SDA.

This will result in period 9 remaining HIGH and will be interpreted as a NACK.

Operation Steps in I2C - 7/12

• If the master sees the ACK signal, it knows a slave exists with the specified address and

proceeds with the message.

Operation Steps in I2C - 8/12

• After each byte is sent, the receiving device sends an ACK signal indicating that it

successfully received the data.

Operation Steps in I2C - 9/12

• A STOP condition occurs when there is a LOW-to-HIGH transition on SDA while SCL is HIGH.

• Once, SDA goes HIGH, SCL also remains HIGH indicating that the bus is idle again.

Operation Steps in I2C - 10/12

• A NACK in period 9 tells the master that no slave exists with the specified address.

• The master then generates a STOP condition and ends the message.

N

Operation Steps in I2C - 11/12

• When the master is writing to a slave, the master sends the 8-bits of data and the slave

produces the ACK/NACK signal.

• When the master is reading from a slave, the slave sends the 8-bits of data and the master

produces the ACK/NACK signal.

• After the data has been sent and acknowledged, the master can end the message by

generating the STOP condition anytime.

• The Master can send multiple data bytes in a single message.

Dr. Manas Khatua 23

Operation Steps in I2C - 12/12

23-08-2023

Source: http://www.byteparadigm.com/kb/article/AA-00255/22/Introduction-to-SPI-and-IC-protocols.html

General structure of a 2-byte transfer

Writing 2-bytes (shaded bits are put on the bus by the master)

Reading 2-bytes (shaded bits are put on the bus by the master)

23-08-2023 Dr. Manas Khatua 23

http://www.byteparadigm.com/kb/article/AA-00255/22/Introduction-to-SPI-and-IC-protocols.html

Demo

 I2C communication between Arduino UNO and Node MCU

 we choose Node MCU as master device and Arduino as slave device

Hardware Connection between Arduino and NodeMCU

• Connect the SDA pin of Arduino to SDA pin (D1) of NodeMCU

• Connect the SCL pin of Arduino to SCL pin (D2) of NodeMCU

• Connect the Ground pin of Arduino to ground pin of NodeMCU

• Plug Arduino and NodeMCU to laptop / PC through USB cable to give power

23-08-2023 Dr. Manas Khatua 24

Demo Code of NodeMCU (master)

#include <Wire.h>

void setup() {

Serial.begin(9600); /* begin serial for debug */

Wire.begin(D1, D2); /* join i2c bus with SDA=D1 and SCL=D2 of NodeMCU */

}

void loop() {

Wire.beginTransmission(8); /* begin with device address 8 */

Wire.write("Hello Arduino"); /* sends hello string */

Wire.endTransmission(); /* stop transmitting */

Wire.requestFrom(8, 13); /* request & read 13 byte data from slave device #8 */

while(Wire.available()){

char c = Wire.read();

Serial.print(c);

}

Serial.println();

delay(1000);

}

23-08-2023 Dr. Manas Khatua 25

Demo Code of Arduino (slave)
#include <Wire.h>

void setup() {

Wire.begin(8); /* join i2c bus with address 8 */

Wire.onReceive(receiveEvent); /* register receive event */

Wire.onRequest(requestEvent); /* register request event */

Serial.begin(9600); /* start serial for debug */

}

void loop() {

delay(100);

}

// function that executes whenever data is received from master

void receiveEvent(int howMany) {

while (0 <Wire.available()) {

char c = Wire.read(); /* receive byte as a character */

Serial.print(c); /* print the character */

}

Serial.println(); /* to newline */

}

// function that executes whenever data is requested from master

void requestEvent() {

Wire.write("Hello NodeMCU"); /*send string on request */

}

23-08-2023 Dr. Manas Khatua 26

Wire Library

• This Wire library allows you to communicate with I2C/TWI devices

• There are both 7 or 8-bit versions of I2C addresses. 7 bits identify the

device, and the 8th bit determines if it’s being written to or read from.

• The Wire library uses 7 bit addresses throughout. However, the addresses

from 0 to 7 are not used because are reserved so the first address that can

be used is 8.

• Functions in Wire.h

begin() end()
requestFrom() beginTransmission()
endTransmission() write()
available() read()
setClock() onReceive()
onRequest() setWireTimeout()
clearWireTimeoutFlag() getWireTimeoutFlag()

23-08-2023 Dr. Manas Khatua 27

https://reference.arduino.cc/reference/en/language/functions/communication/wire/begin
https://reference.arduino.cc/reference/en/language/functions/communication/wire/end
https://reference.arduino.cc/reference/en/language/functions/communication/wire/requestfrom
https://reference.arduino.cc/reference/en/language/functions/communication/wire/begintransmission
https://reference.arduino.cc/reference/en/language/functions/communication/wire/endtransmission
https://reference.arduino.cc/reference/en/language/functions/communication/wire/write
https://reference.arduino.cc/reference/en/language/functions/communication/wire/available
https://reference.arduino.cc/reference/en/language/functions/communication/wire/read
https://reference.arduino.cc/reference/en/language/functions/communication/wire/setclock
https://reference.arduino.cc/reference/en/language/functions/communication/wire/onreceive
https://reference.arduino.cc/reference/en/language/functions/communication/wire/onrequest
https://reference.arduino.cc/reference/en/language/functions/communication/wire/setwiretimeout
https://reference.arduino.cc/reference/en/language/functions/communication/wire/clearwiretimeoutflag
https://reference.arduino.cc/reference/en/language/functions/communication/wire/getwiretimeoutflag

Demo Output

 Output in Master Device

 Output in Slave Device

23-08-2023 Dr. Manas Khatua 28

Lessons Learned

 What is serial communication

 What is synchronous communication

 I2C communication mechanism

 Demo on I2C communication

23-08-2023 Dr. Manas Khatua 29

30

Thanks!

23-08-2023 Dr. Manas Khatua

Acknowledgement:

• Most of the images are taken from “Embedded Systems Design”, by Brock J. LaMeres, Springer

Publisher

• Source of the sample code used in demo: https://www.electronicwings.com/nodemcu/nodemcu-i2c-

with-arduino-ide

https://www.electronicwings.com/nodemcu/nodemcu-i2c-with-arduino-ide

