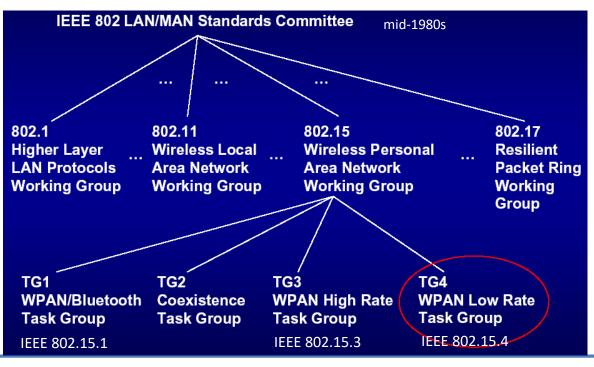

CS578: Internet of Things

IEEE 802.15.4 Low-Rate Wireless Networks

2011 version: <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012487</u> 2015 version: <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7460875</u> 2020 version: <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9144691</u>

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati


E-mail: manaskhatua@iitg.ac.in

"The highest education makes our life in harmony with all existence." - Rabindranath Tagore

IEEE 802.15 Working Group

- IEEE 802.11 was concerned with features like
 - Ethernet like speed
 - Medium range (~100 m) communication
 - Seamless roaming
 - Less complex message forwarding
 - Data throughput ~ 2-11 Mbps

- IEEE 802.15 are focused to
 - Short range
 - space around a person or a object (~ 10 m)
 - Low cost
 - Low power
 - Very small packet size

IEEE 802.15 working group mainly defines three standards:

- 1. High data rate WPAN
 - IEEE 802.15.3
 - e.g. for multimedia applications

2. Medium rate WPAN

- IEEE 802.15.1 / Bluetooth
- e.g. for device to device communication

3. Low rate WPAN

- IEEE 802.15.4
- e.g. relaxed data rate, and battery powered device

IEEE 802.15 - Task Group 4

- TG4 was formed to define
 - <u>low-data-rate PHY and MAC</u> layer specifications for wireless personal area networks (WPAN)
 - standard has evolved over time:
 - IEEE 802.15.4-2003 ; IEEE 802.15.4-2006
 - IEEE 802.15.4-2011; IEEE 802.15.4-2015
 - ➢ IEEE 802.15.4-2020
 - WPAN
 - span a small area
 - e.g., a private home or an individual workspace
 - short distance communication
 - low-powered communication
 - e.g. lifetime must be few months or years
 - primarily uses ad-hoc networking
 - Generally wireless; could be wired
 - Intended to serve industrial, residential and medical applications

IEEE 802.15.4 LR-WPAN

- A low-rate wireless personal area network (LR-WPAN) is a
 - ✓ simple,
 - ✓ low-cost communication network
 - \checkmark that allows wireless connectivity in applications
 - \checkmark with limited power and
 - ✓ relaxed throughput requirements.
- The main objectives of an LR-WPAN are
 - \checkmark ease of installation,
 - ✓ reliable data transfer,
 - ✓ extremely low cost,
 - ✓ a reasonable battery life,
 - ✓ while maintaining a simple and flexible protocol.

Reference: IEEE Std 802.15.4[™]-2020, "IEEE Standard for **Low-Rate Wireless Networks**", Developed by the LAN/MAN Standards Committee of the IEEE Computer Society, Approved on 6 May 2020.

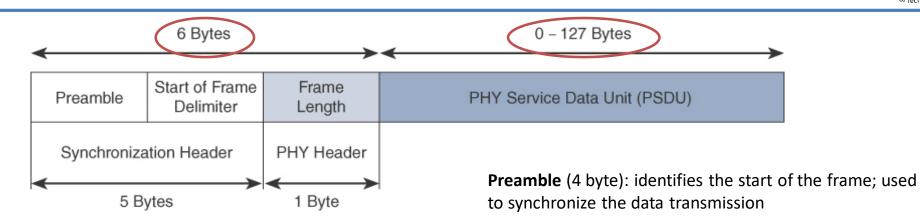
IEEE 802.15.4 Stack – PHY & MAC

IEEE 802.15.4 standard is limited to the PHY & MAC Layers

The OSI model adapted to the IEEE 802.15.4 Application Layer 3 Path determination and IP, i.e., logical addressing 802.2 LLC 802.2 LLC MAC sublayer Layer 1 Physical Media, signalling, and transmission Radio link

LLC: Logical Link Control – provides protocol multiplexing **SSCS**: Service Specific Convergence Sublayer

- IEEE 802.15.4 standard PHY provides the PHY data service and PHY management services:
 - The PHY data service enables the transmission and reception of PHY protocol data units (PPDU) across the physical radio channel.
 - The PHY's features include
 - radio transceiver activation/deactivation,
 - radio channel selection,
 - energy level detection (ED) ,
 - received signal quality (RSI) or link quality indicator (LQI),
 - clear channel assessment (CCA),
 - channel selection
 - transmitting and receiving packets in 2.4-GHz band.
- IEEE 802.15.4 standard MAC provides the MAC data service and MAC management services.
 - The MAC data service enables transmission of MAC protocol data units (MPDU) across the PHY data service.
 - The MAC sublayer features include
 - beacon management,
 - channel access,
 - GTS management,
 - frame validation,
 - ACK frame delivery, and
 - association and disassociation.


Image Source: <u>https://www.embedded.com/ieee-802-15-4-zigbee-hardware-and-software-open-the-applications-window/</u>

IEEE 802.15.4 PHY

IEEE 802.15.4 PHY Layer

IEEE 802.15.4 PHY Frame Format

SFD (1 byte): informs the receiver about the starting point of frame content. It shall be formatted as "1110 0101"

PHY functionalities:

- Activation & deactivation of the radio transceiver
- Energy level detection (ED) within the current channel
- Link quality indication (LQI) or received signal quality (RSI) for received packets
- Clear channel assessment (CCA) for CSMA-CA
- Channel frequency selection
- Data packet transmission and reception at given frequency

Spectrum

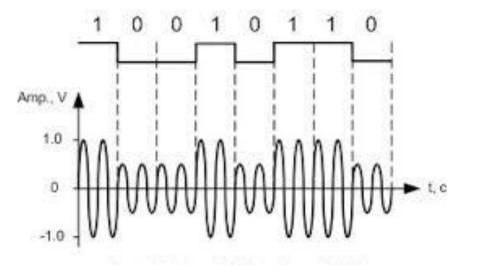
- Federal Communications of Commissions (FCC) in USA decides frequency bands
- Applications using ISM band do not require a licence for stations emitting less than 1W.

FCC Band	Max. Transmit Power	Frequencies				
Industrial Band	< 1 W	902 MHz – 928 M Hz				
Scientific Band	< 1 W	2.4 GHz – 2.48 GHz				
Medical Band	< 1 W	5.725 GHz – 5.85 GHz				
U-NII (Unlicensed	< 40 mW	5.15 GHz – 5.25 GHz				
National Information	< 200 mW	5.25 GHz – 5.35 GHz				
Infrastructure)	< 800 mW	5.725 GHz – 5.82 GHz				

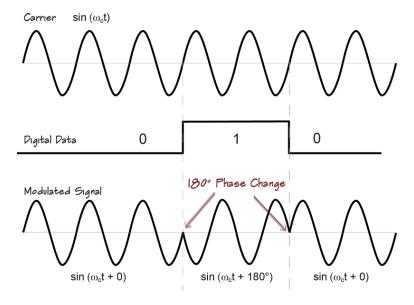
• Physical layer transmission options in IEEE 802.15.4-2015

 – 2.4 GHz, 	16 channels,	data rate 250 kbps
– 915 MHz,	10 channels,	data rate 250 kbps
– 868 MHz,	3 channel,	data rate 100 kbps

Modulation

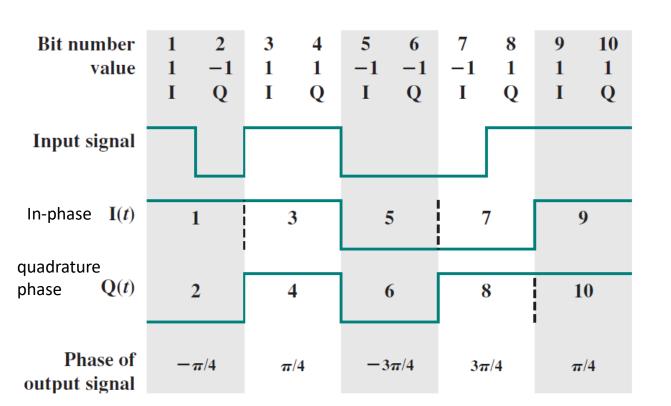

Modulation is the process by which some characteristic of a carrier wave is varied in accordance with an information/ modulating signal.

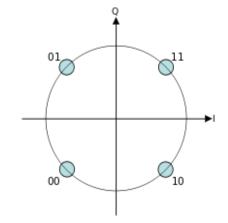
Modulation schemes


BPSK PHY

- **OQPSK PHY** : DSSS PHY employing Offset Quadrature Phase-Shift Keying (OQPSK)
 - : DSSS PHY employing binary phase-shift keying (BPSK)
- ASK PHY

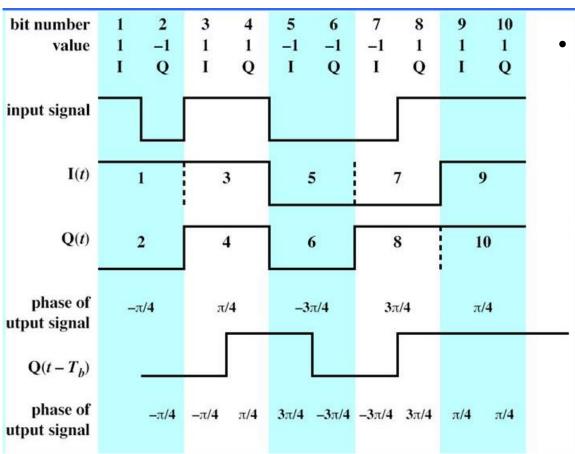
: PSSS PHY employing Amplitude Shift Keying (ASK) and BPSK




Amplitude Shift Keying (ASK)

Binary Phase-Shift Keying (BPSK)

QPSK


Constellation diagram for QPSK

Quadrature Phase-Shift Keying (QPSK)

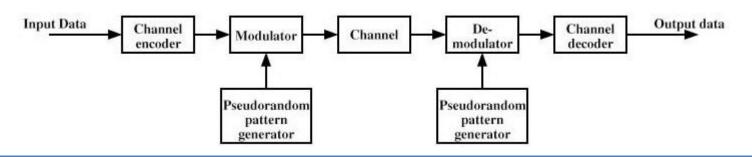
- More efficient use of bandwidth
 - as each signalling element represents more than one bit.

Orthogonal QPSK

Problem in QPSK: large phase shift at high transition rate is difficult to perform.
 Phase shift is 180° in QPSK.

OQPSK

- ✓ a variation of QPSK known as offset QPSK or orthogonal QPSK
- ✓ a delay of one bit time is introduced in the Q stream of QPSK
- Its spectral characteristics and bit-error performance are the same as that of QPSK
- At any time the phase change in the combined signal never exceeds 90° (π/2)



Spread Spectrum

Spread Spectrum is a method of <u>spreading a transmitted spectrum over a wide bandwidth</u>, so that the <u>energy at any particular frequency is not detectable</u> without special foreknowledge of the spreading technique.

- Spread-spectrum transmission offers many advantages over a fixed-frequency transmission.
 - Spread-spectrum signals are highly resistant to narrow band interference
 - Signals are difficult to intercept, so immune to jamming
- Types:
 - direct sequence spread spectrum (DSSS)
 - frequency hopping spread spectrum (FHSS)

Cont...

- Pseudorandom numbers
 - generated by an algorithm using some initial value called the seed
 - produce sequences of numbers that are not statistically random, but passes reasonable tests of randomness
 - unless you know the algorithm and the seed, it is impractical to predict the sequence
- Gain from this apparent waste of spectrum
 - The signals gains immunity from various kinds of noise and multipath distortion.
 - Immune to jamming attack
 - It can also be used for hiding and encrypting signals.
 - Several users can independently use the same higher bandwidth with very little interference. (e.g. CDMA)

- each bit in the original signal is represented by multiple bits in the transmitted signal, using a spreading code
- spreading code spreads the signal across a wider frequency band in direct proportion to the number of bits used

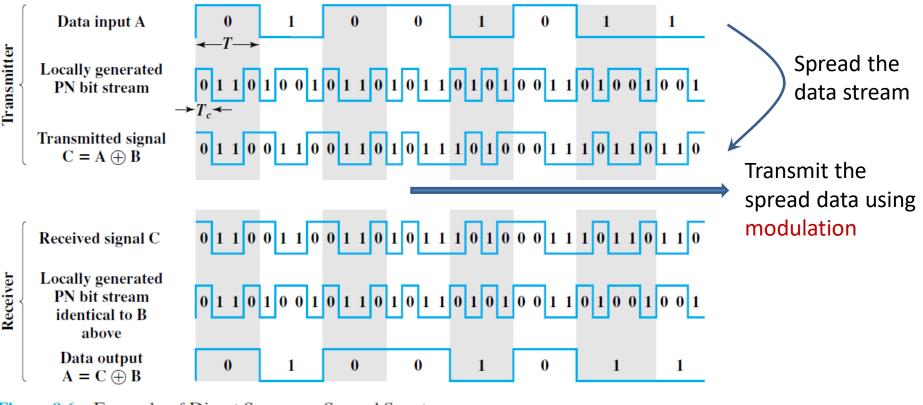
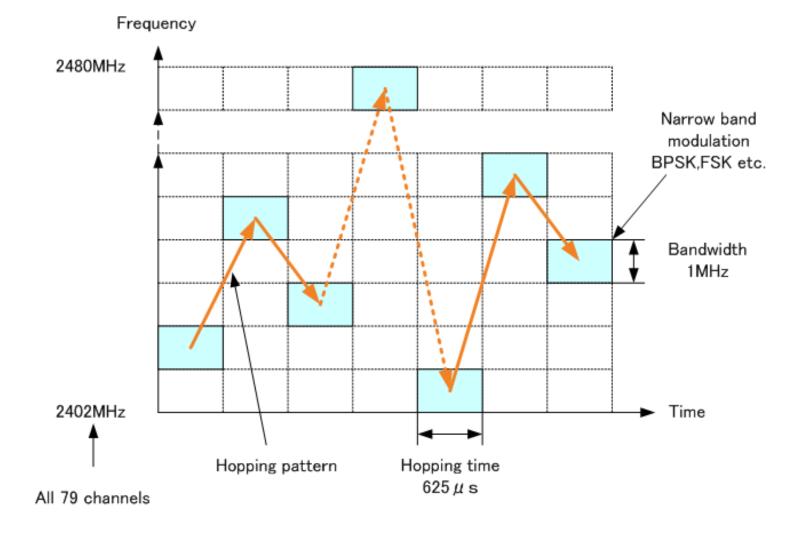
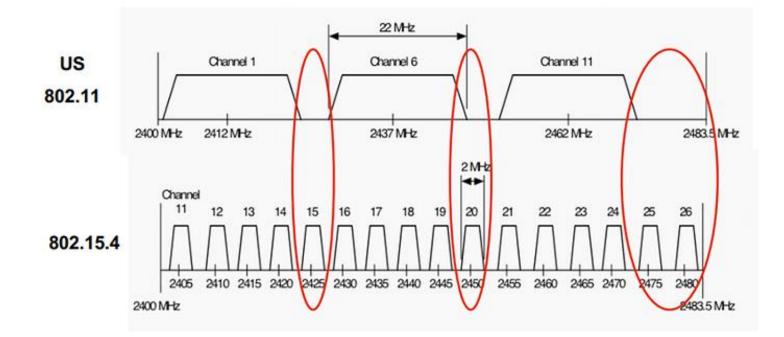



Figure 9.6 Example of Direct Sequence Spread Spectrum

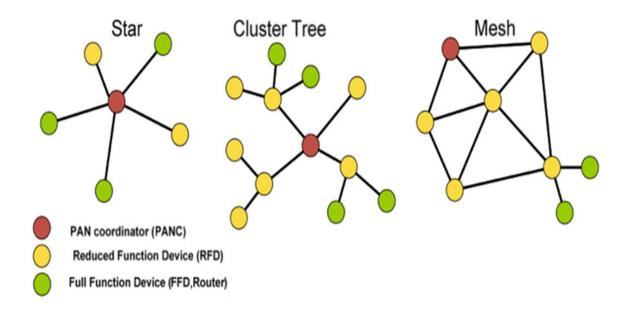

FHSS

Other PHY Attributes

- IEEE 802.15.4 does not prefer to use frequency hopping to minimize energy consumption.
- To minimize interference in 2.4 GHz band, IEEE 802.15.4 prefer channel no. 15, 20, 25, 26
- Transmission power is adjustable from 0.5 mW (min. in 802.1.5.4) to 1 W (max. in ISM band)
- Transmission power 1 mW provides theoretical distances as:
 - Outdoor range 300 m.
 - Indoor range 100 m.

Cont...

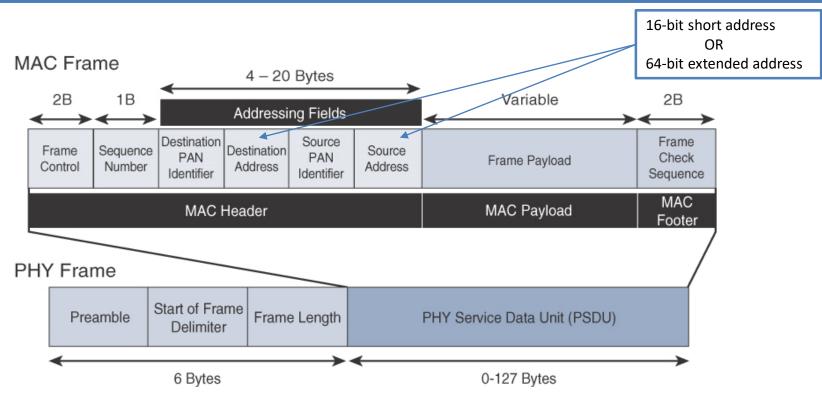
- 802.15.4 PHY provides energy detection (ED) feature
 - Application can request to asses each channel's energy level
 - It is an estimate of the <u>received signal power</u> within the bandwidth of the channel
 - Coordinator can make optimal selection of channel based on channels energy level
- 802.15.4 PHY provides link quality information (LQI) to NET and APP layers
 - The LQI measurement is a characterization of the strength and/or <u>quality of a received packet</u>.
 - The measurement may be <u>implemented using</u>
 - i. receiver ED
 - ii. signal-to-noise ratio (SNR) estimation, or
 - iii. combination of the above methods.
 - Transmitter may decide to use high transmission power based on LQI
 - Applications may dynamically change 802.15.4 channels based on LQI
- 802.15.4 uses **CSMA/CA** which ask the PHY layer to do CCA
 - Clear Channel Assessment (CCA) is performed by any one of the below methods:
 - Energy above ED threshold regardless of modulation
 - Carrier sense only (i.e. based on the detection of a signal with modulation and spreading characteristics)
 - Combination of both the above



IEEE 802.15.4 MAC

IEEE 802.15.4 MAC layer

- MAC layer manages access to the PHY channel
 - defines how devices in the same area will share the frequencies allocated.
- Main tasks:
 - Network beaconing for devices acting as coordinators
 - PAN association and disassociation by a device
 - Reliable link communications between two peer MAC entities
 - Device security


IEEE 802.15.4 Device Types

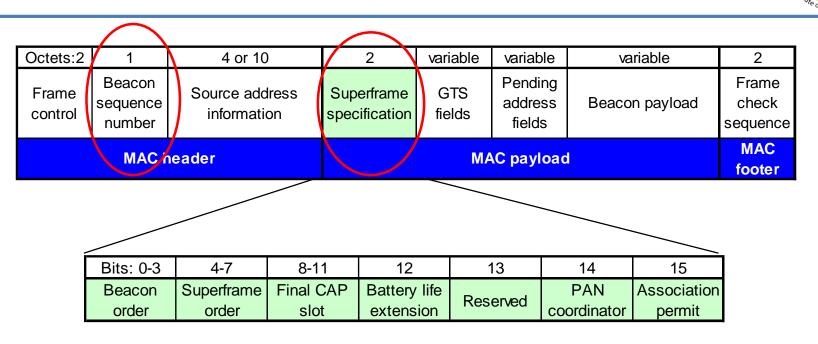
- There are two different device types :
 - full function device (FFD)
 - reduced function device (RFD)
- The **FFD** can operate in three modes by serving as
 - PAN Coordinator
 - scanning the network and selecting optimal RF channel
 - selecting the 16 bit PAN ID for the network
 - Coordinator (aka Parent, Join Proxy)
 - relaying messages to other FFDs including PAN coordinator
 - transmits periodic beacon (under beacon enable access mode)
 - respond to beacon requests
 - Device
 - cannot route messages
 - usually receivers are switched off except during transmission
 - attached to the network only as leaf nodes
- The **RFD** can only serve as:
 - Device

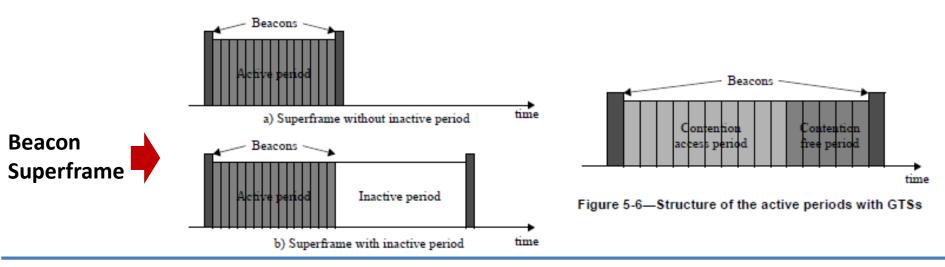
General MAC Frame Format

MAC frame types:

- Data frame
- ACK frame
- Beacon frame
- Command frame

Cont...

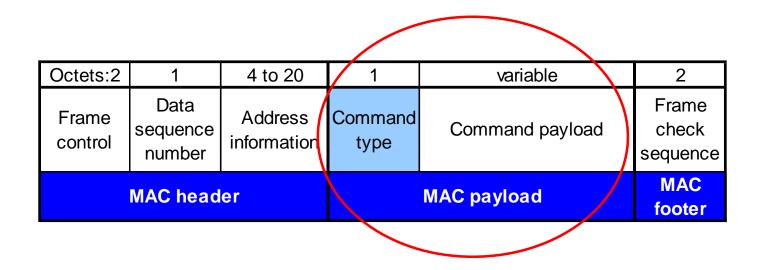

802.15.4 MAC header									
Octets:2	1		0/2	0/2/8	0/2	0,	/2/8	variable	
Frame Control			estination PAN ID	Destination address	Source PAN I		ource dress	Frame payload	
Bits: 3 1		1	1	1	3	2	2	2	
Frame Type	Security enabled	Frame pending	ACK required	Pan ID Compress	Reserved	<u>Dest addr</u> mode	Frame Version	Src addr mode	
Ţ	2372 2227	2000							


-Values of the Frame Type subfield

Frame type value b2 b1 b0	Description
000	Beacon
001	Data
010	Acknowledgment
011	MAC command
100-111	Reserved

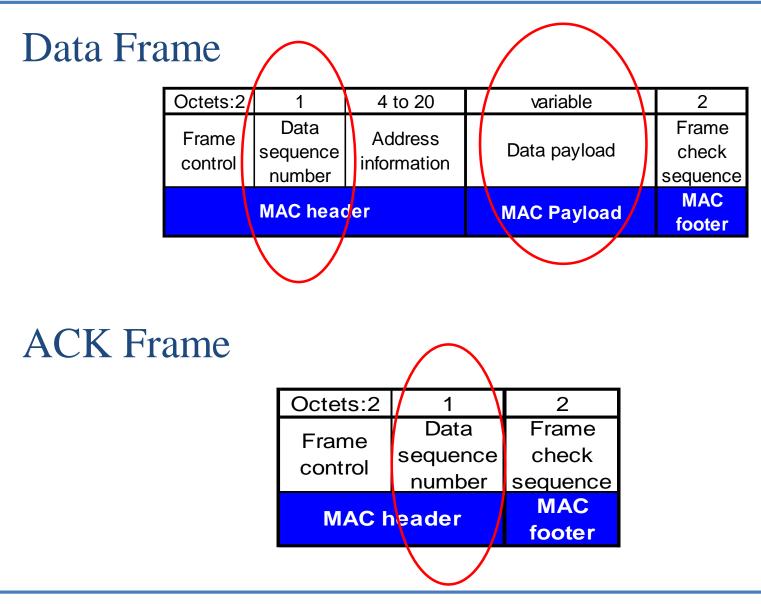
Addressing mode value $b_1 b_0$	Description					
00	PAN identifier and address field are not present.					
01	Reserved.					
10	Address field contains a 16 bit short address.					
11	Address field contains a 64 bit extended address.					

Beacon Frame Format



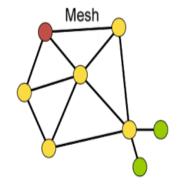
ताह्योगिकी संस्थाः

Command Frame Format

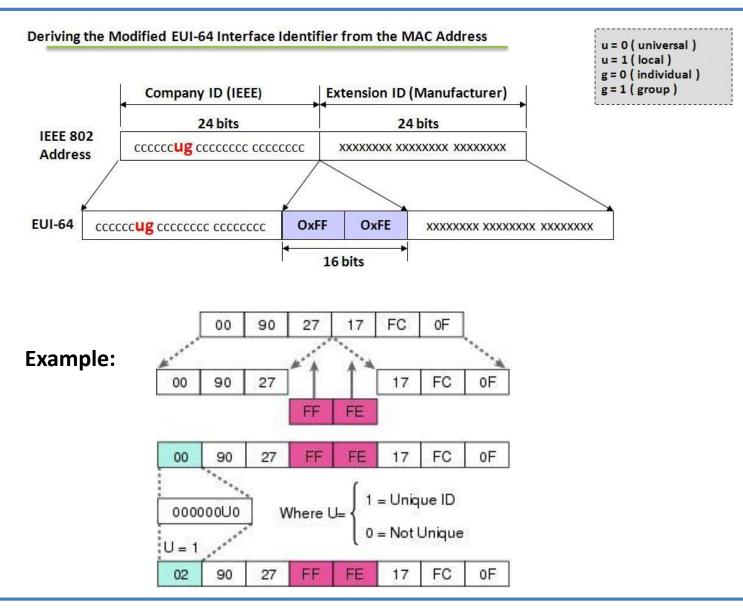


- Command Frame Types
 - Association request
 - Association response
 - Disassociation notification
 - Data request
 - PAN ID conflict notification

- Orphan Notification
- Beacon request
- Coordinator realignment
- GTS request

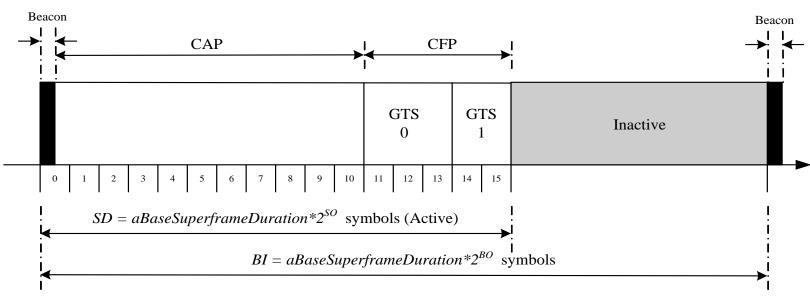

Data & ACK Frame Format

Device Addressing


- Two or more devices communicating on the same physical channel constitute a WPAN.
 - A WPAN includes <u>at least one FFD (PAN coordinator)</u>
 - Each independent PAN will select a unique PAN ID
- IEEE 802.15.4 devices can be grouped into PAN. These are identified by their **2 Byte PAN identifier**
- Each device operating on a network has a unique 64-bit address
 - called extended unique identifier (EUI-64)
 - This address can be used for direct communication in the PAN
- A device also has a 16-bit short address, which is allocated by the PAN coordinator when the device associates with its coordinator.
 - Same short address may be present into different PAN

Deriving EUI-64 ID from MAC

Addressing Modes


- IEEE 802.15.4 frames contain address of both the source & destination.
- Three different addressing modes, which sets the address field (none/ short/long, with/without PAN ID)
 - Short addressing mode: The address field includes a <u>short address (2B) & a</u> <u>PAN ID (2B) = (total of 4 bytes).</u>
 - Long addressing mode: The address field includes a <u>long address (8B)</u> and a <u>PAN ID (2B)</u> = (total of 10 bytes).

- No addressing mode:

- For ACK frame both addresses are missing.
- For Data and Command frames only one (either source or destination) field can be omitted
 - if the source address is omitted, it means the PAN coordinator sent the frame;
 - if the destination address is missing, it means it should be received by the PAN coordinator.

Superframe

- A superframe is divided into two parts
 - Inactive: all station sleep.
 - no communication
 - nodes can turn their radios off and go into power saving mode
 - Active:
 - Active period is divided into 16 slots in general
 - 16 slots are further divided into two parts
 - Contention access period (CAP)
 - Contention free period (CFP)
 - Beacon only period (BOP)

- superframe order (SO) : decides the length of the active portion in a superframe
- beacon order (BO) : decides the length of a superframe or beacon transmission period
- beacon-enabled network should satisfy 0≦SO≦BO≦14
- PAN coordinator decides SO, BO
 - Default value: SO=3, BO=5
- SD: Superframe Duration
- BI: Beacon Interval

•

Cont...

• aBaseSlotDuration

= The number of symbols forming a superframe slot when *the superframe order (SO)* is equal to zero = 60 PHY symbols

• aNumSuperframeSlots

= The number of slots contained in any superframe

= 16

aBaseSuperframeDuration

= The number of symbols forming a superframe when *the superframe order (SO)* is equal to zero

- = aBaseSlotDuration × aNumSuperframeSlots
- So, Length of a superframe

= can range from 15.36 *msec* to 215.7 *sec* (= 3.5 min).

- Each device will be
 - active for 2^{-(BO-SO)} portion of the time
 - sleep for 1 2^{-(BO-SO)} portion of the time

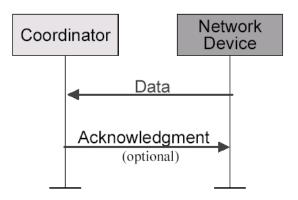
•	Duty Cycle:	BO-SO	0	1	2	3	4	5	6	7	8	9	≧10
		Duty cycle (%)	100	50	25	12	6.25	3.125	1.56	0.78	0.39	0.195	< 0.1

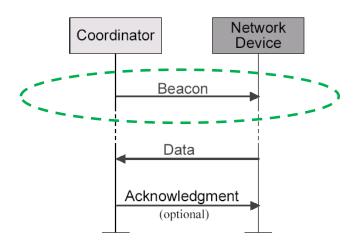
Beaconed / Non-beaconed network

- In a "beacon-enabled" network (i.e. uses superframe structure)
 - Devices use the slotted CAMA/CA mechanism to contend for the channels
 - FFDs who require fixed rates of transmissions can ask for GTS from the coordinator
- In a "nonbeacon-enabled" network (i.e. do not use superframe structure)
 - Devices use the unslotted CAMA/CA mechanism for channel access
 - GTS shall not be permitted
- CSMA/CA is not used for Beacon transmission;
- CSMA/CA is also not used for Data transmission during CFP
- Beacons are used for
 - announcing the existence of a PAN
 - synchronizing with other devices
 - informing pending data in coordinators
 - starting superframes

Communication to a coordinator

Communication to a coordinator In a non-beacon-enabled network

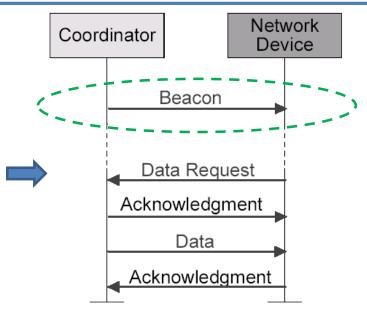

Data Transfer: Device -> Coordinator


In a beacon-enable network

- a device finds the beacon to synchronize to the **superframe** structure.
- Then it uses **slotted CSMA/CA** to transmit its data.

In a non-beacon-enable network

 device simply transmits its data using unslotted CSMA/CA



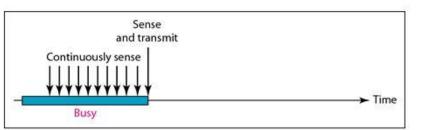
Data Transfer: Coordinator -> Device

- Data transferred **from** coordinator **to** device
 - in a beacon-enabled network:
 - The coordinator indicates in the **beacon** that some data is pending.
 - A device periodically listens to the beacon and transmits a **Data Request** command using slotted CSMA/CA.
 - Then ACK, Data, and ACK

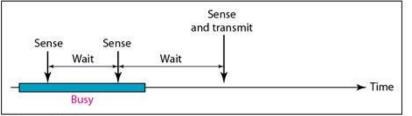
Coordinator

 Data Request

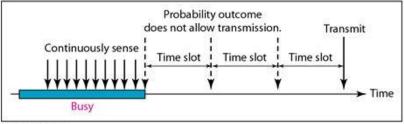
 Acknowledgment


 Data

 Acknowledgment


- Data transferred **from** coordinator **to** device
 - in a non-beacon-enable network:
 - The device transmits a Data Request using unslotted CSMA/CA.
 - If the coordinator has its pending data, an ACK is replied.
 - Then the coordinator transmits **Data** using unslotted CSMA/CA.
 - If there is no pending data, a data frame with zero length payload is transmitted.
 - ACK is replied

Channel Access Mechanism



a. 1-persistent

b. Nonpersistent

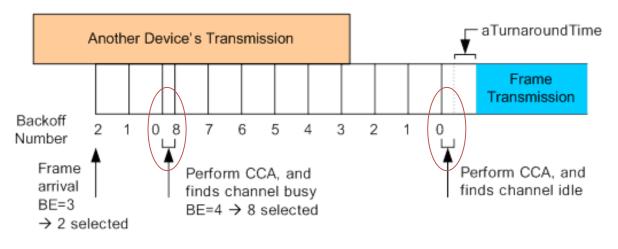
c. p-persistent

- **CSMA** requires that each station first check the state of the medium before sending.
- This method aims to decrease the chances of collisions when two or more stations want to transmit data
- Persistent methods can be applied to take action when the channel is sensed busy/idle.
 - 1-persistent
 - When station found idle channel, it transmits the frame without any delay.
 - Non-persistent
 - when the channel is found busy, it will wait for the random time and again sense for the state of the station whether idle or busy
 - p-persistent
 - If the channel found to be idle, it transmits the frame with probability p
 - This is implemented using backoff period concept

Unslotted CSMA/CA

- CSMA/CA random channel access
 - nonbeacon-enabled network -> uses unslotted CSMA/CA

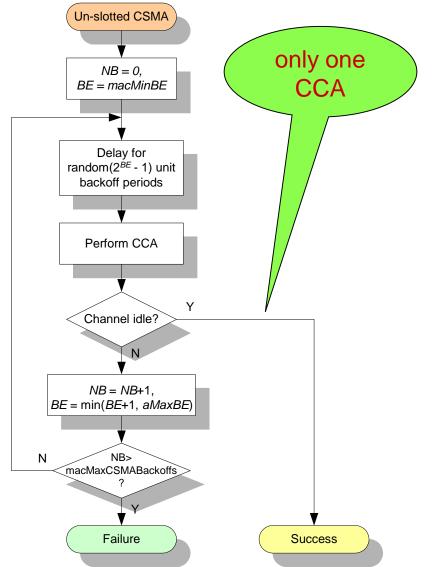
In unslotted CSMA/CA:


- The backoff periods of one device are not related in time to the backoff periods of any other device in the PAN.
- One backoff period = *aUnitBackoffPeriod*.

Backoff:

 is an algorithm that uses feedback to multiplicatively decrease the rate of some process

Binary exponential backoff (BEB)


 After *c* collisions in BEB algo., the delay is randomly chosen from [0, 1, ..., N] slots, where N = 2^c - 1.

BE: Backoff Exponent

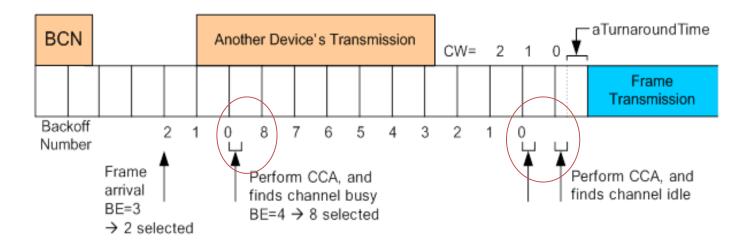
Cont...

NB (Number of Backoff): number of times that backoff has been taken in this attempt of transmission

if exceeding macMaxCSMABackoff, the attempt fails

BE (Backoff Exponent): play the role to decide how many backoff periods a device shall wait before attempting to assess a channel.

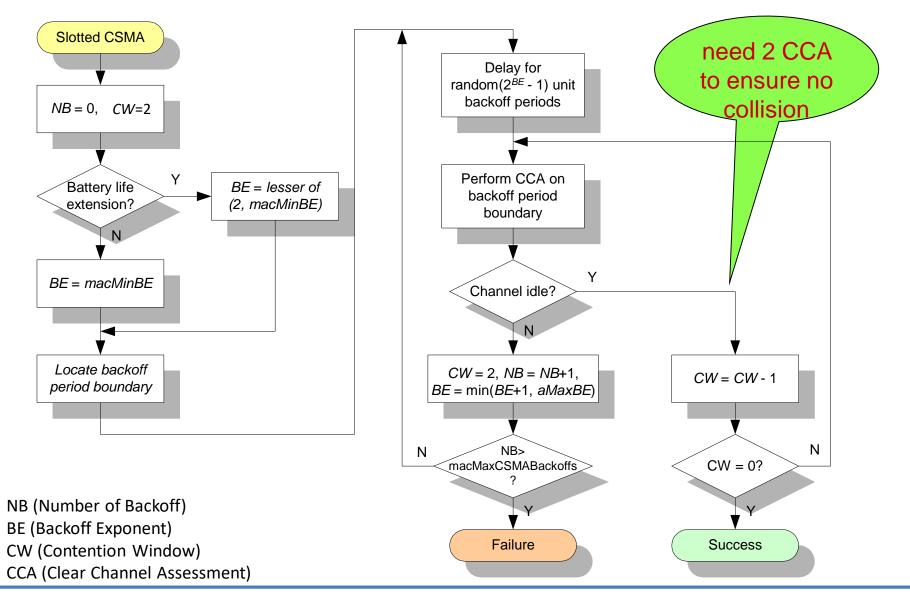
CCA (Clear Channel Assessment)


Slotted CSMA/CA

- CSMA/CA random channel access
 - ➢ beacon-enabled network → uses slotted CSMA/CA

In slotted CSMA/CA:

- The backoff period boundaries of every device in the PAN shall be aligned with the superframe slot boundaries of the PAN coordinator
 - i.e. the start of first backoff period of each device is aligned with the start of the beacon transmission
- The MAC sublayer shall ensure that the PHY layer commences all of its transmissions on the boundary of a backoff period

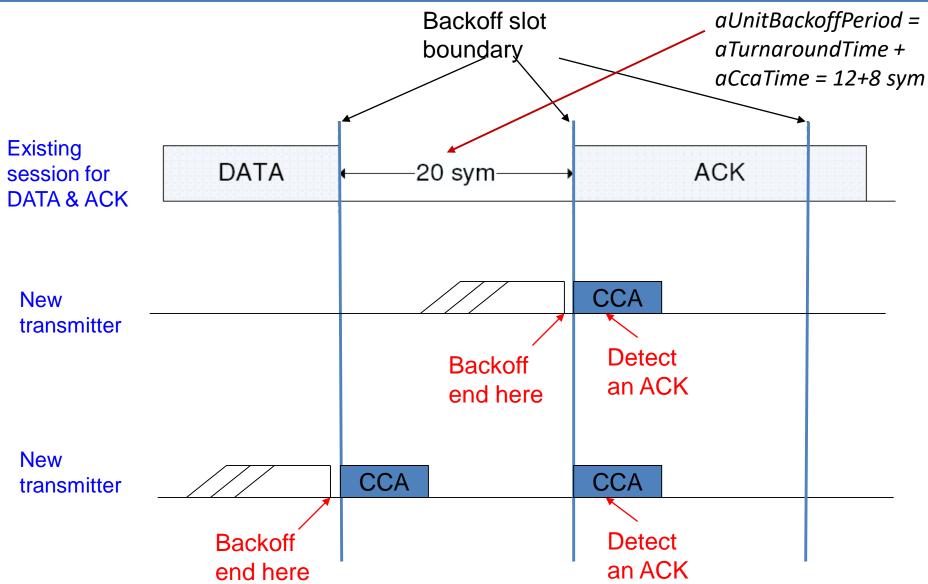

Cont...

- Each device maintains 3 variables for each transmission attempt
 - NB (Number of Backoff): number of times that backoff has been taken in this attempt of transmission
 - if exceeding macMaxCSMABackoff, the attempt fails
 - BE (Backoff Exponent): play the role to decide how many backoff periods a device shall wait before attempting to assess a channel.
 - The number of backoff periods is lesser than the remaining number of slots in the CAP
 - Otherwise, MAC sublayer shall pause the backoff countdown at the end of the CAP, and resume it at the start of the CAP in the next superframe
 - CW (Contention Window): the number of clear slots that must be seen after each backoff
 - always set to 2 and count down to 0 if the channel is sensed to be clear
 - The design is for some PHY parameters, which require 2 CCA for efficient channel usage.
 - Note: CW in 802.15.4 is not same with CW in 802.11
 - CW in 802.11 is used to decide the <u>backoff window size</u> from which the backoff period is chosen randomly
 - CW in 802.15.4 is used to decide how many rounds of CCA is required before getting the channel access
- Battery Life Extension (BLE):
 - designed for very low-power operation, where a node only contends in the first few slots

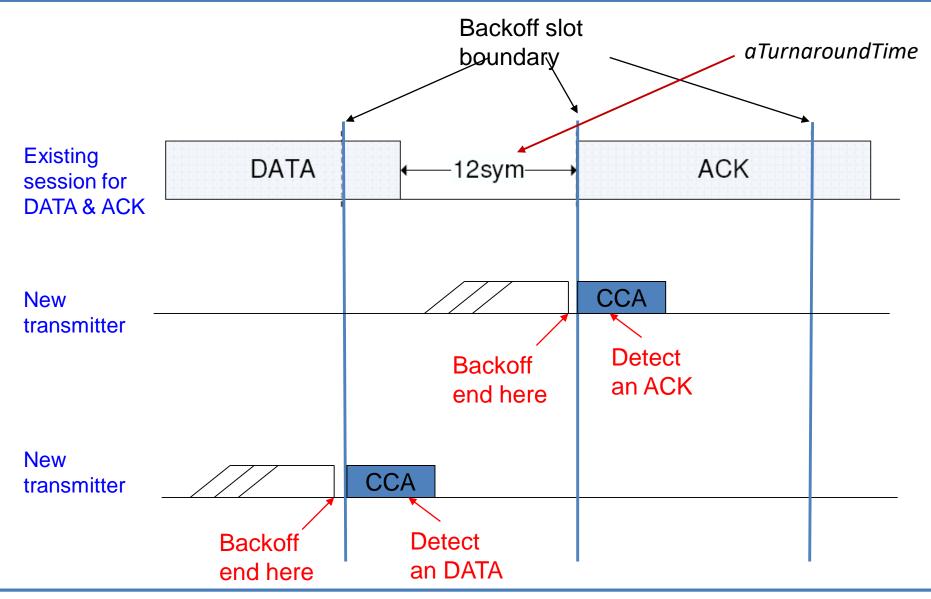
Cont...

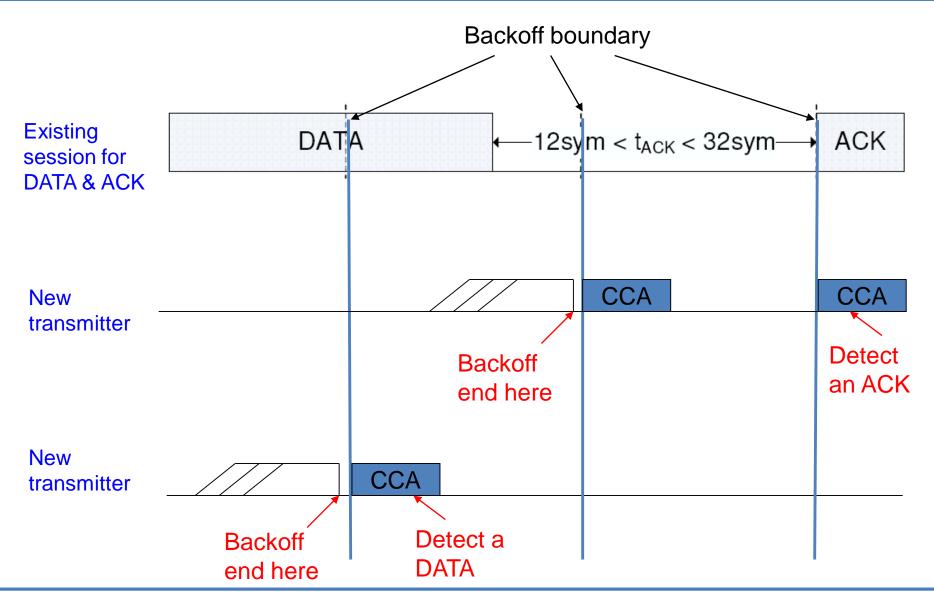
03-09-2024

Dr. Manas Khatua

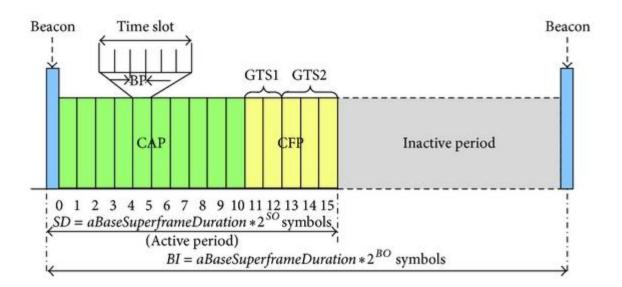

Why 2 CCAs to Ensure Collision-Free

- Each CCA occurs at the boundary of a backoff slot
- Each Backoff Slot duration = 20 PHY symbols
- Each CCA duration = 8 PHY symbols
- The standard specifies that a transmitter node performs the CCA twice in order to protect acknowledgment (ACK).
 - When an ACK packet is expected, the receiver shall send it after a $t_{\rm ACK}$ time on the backoff boundary
 - t_{ACK} varies from 12 to 31 symbols
 - One-time CCA of a transmitter may potentially cause a collision between a newlytransmitted packet and an ACK packet.
 - (See examples below)


Why 2 CCAs (case 1)

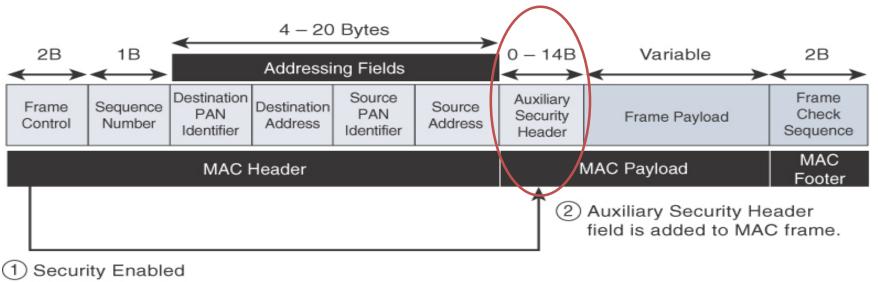

Why 2 CCAs (Case 2)

Why 2 CCAs (Case 3)



GTS Concepts

- A guaranteed time slot (GTS) allows a device to operate on the channel within a portion of the superframe
- <u>A GTS shall only be allocated by the PAN coordinator</u>
- The PAN coordinator can allocate up to 7 GTSs at the same time
- The PAN coordinator decides whether to allocate GTS based on:
 - Requirements of the GTS request
 - The current available capacity in the superframe


Cont...

- A GTS can be deallocated
 - At any time at the discretion of the PAN coordinator, OR
 - By the device that originally requested the GTS
- A device that has been allocated a GTS may also operate in the CAP
- A data frame transmitted in an allocated GTS shall use only short addressing
- Before GTS starts, the GTS direction shall be specified as either Tx or Rx
 - Each device may request one transmit GTS and/or one receive GTS
- A device shall only attempt to allocate and use a GTS if it is currently tracking the beacon
- If a device loses synchronization with the PAN coordinator, all its GTS allocations shall be lost
- The use of GTSs by an RFD is optional

Security

1) Security Enabled bit in Frame Control is set to 1.

- IEEE 802.15.4 specification uses Advanced Encryption Standard (AES) with a 128-bit key length as the base encryption algorithm
- Message integrity code (MIC), which is calculated for the entire frame using the same AES key, to validate the data that is sent

Limitations in 802.15.4

- Disadvantages of Initial version of IEEE 802.1.5.4
 - MAC reliability
 - unbounded latency
 - multipath fading
- IEEE 802.15.4e amendment of IEEE 802.15.4-2011 <u>expands the MAC layer</u> feature set
 - to remedy the disadvantages of 802.15.4.
 - to better suitable in factory and process automation, and smart grid
 - Main modifications were:
 - frame format,
 - security,
 - determinism mechanism,
 - frequency hopping

- IEEE 802.15.4g amendment of IEEE 802.15.4-2011 <u>expands the PHY layer</u> feature set
 - to optimize large outdoor wireless mesh networks for field area networks (FANs)
 - to better suitable in smart grid or smart utility network (SUN) communication
 - Main modifications were:
 - New PHY definitions
 - some MAC modifications were needed to support the new PHY

Lessons Learned

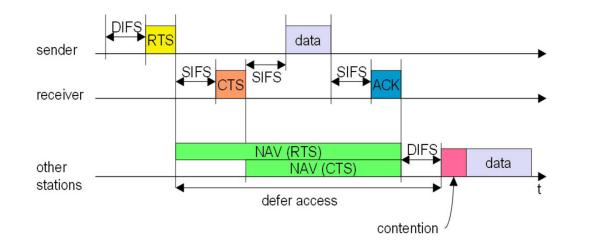
Addition of technologi

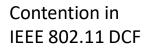
- ✓ What is IEEE 802.15.4
- ✓ IEEE 802.15.4. PHY
 - Functionalities
 - Modulation, QPSK, OQPSK
 - Spread Spectrum, DSSS, FHSS

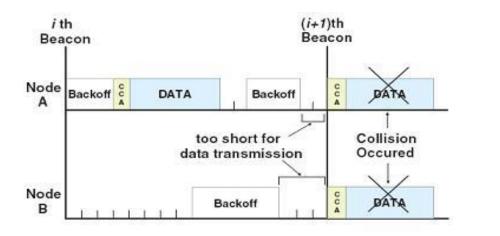
✓ IEEE 802.15.4 MAC

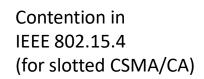
- MAC Frame Formats
- Timeslot, Superframe
- Device Addressing
- Data Transfer Model
- Channel Access Methods
- Guaranteed time slot (GTS)
- Association Procedure
- Security

✓ Limitations of IEEE 802.15.4




Figures and slide materials are taken from the following sources:


- 1. David Hanes *et al.*, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.
- 2. Oliver Hersent et al., "The Internet of Things: Key Applications and Protocols", 2018, Wiley India Pvt. Ltd.


Contention in 802.11 & 802.15.4

