CS578: Internet of Things

IEEE 802.15.4e

IEEE 802.15.4e Standard: <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6185525</u> Article: "IEEE 802.15.4e: A survey" <u>https://www.sciencedirect.com/science/article/pii/S0140366416301980</u>

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

"The best among you is the one who doesn't harm others with his tongue and hands." - Muhammad

Limitations of 802.15.4 MAC

Unbounded latency

- Both BE and Non-BE mode use CSMA/CA
- No bound on maximum delay to reach destination
- Non-reliable communication
 - Very low delivery ratio due to the inefficiency of CSMA/CA

- No protection against interferences/multipath fading
 - Due to usage of single channel
- Powered relay nodes in multi-hop network
 - Relay nodes keep their radio active always.
 - complex synchronization and beacon scheduling in BE mode for multihop
 - Consume large energy
- So, IEEE 802.15.4 is unsuitable for many critical scenarios
 - when applications have stringent requirements

Requirements of Critical Applications

> Timeliness

- Deterministic latency for packet delivery
- Reliability
 - Wire-like reliability may be required, e.g., 99.9% or better
- Scalability
 - Large network size
- Energy Efficiency
 - Target battery lifetime: 5 years, or more

Introduction to 802.15.4e

- IEEE 802.15 Task Group 4e was created in 2008
 - To redesign the existing 802.15.4 MAC
- IEEE 802.15.4e MAC Enhancement Standard approved in 2012
 - Contains idea from existing WirelessHART and ISA 100.11.a
 - Time slotted access
 - Shared and dedicated slots
 - Multi-channel communication
 - Frequency hopping
 - Introduce five MAC behaviour modes to support specific applications
 - General functional enhancements
 - Not tied to any specific application domain

MAC modes

Time Slotted Channel Hopping (TSCH)

- Industrial automation and process control
- Delay sensitive applications

Deterministic and Synchronous Multi-channel Extension (DSME)

- Industrial and commercial applications
- Non-delay tolerant and delay tolerant applications

- Low Latency Deterministic Network (LLDN)
 - For single hop and single-channel networks
 - Star topology
 - Provides very low latency

Cont..

- > Asynchronous multi-channel adaptation (AMCA)
 - For large network such as smart utility networks, infrastructure monitoring
 - Used in non Beacon-Enabled PANs
 - Device selects best link quality channel as its designated listening channel
 - Sender node switch to receiver designated listening channel to transmit its data
 - Beacon or Hello packet is used to advertise node designated listening channel

Radio Frequency Identification Blink (BLINK)

- For Application like item/people identification, location and tracking
- Node communicate without prior association
- No ACK required
- Aloha protocol is used to transmit BLINK packet by "transmit only" devices

10-10-2023

General Functional Enhancements

These are not tied to any specific application domain:

Low Energy (LE)

- Operate in very low duty cycle (<= 1%)
- Appearing always on to the upper layers
- Intended for applications that can trade latency for energy efficiency

Information Elements (IE)

- Mechanism to exchange information at the MAC sublayer
- Enhanced Beacons (EB)
 - Extension of the 802.15.4 beacon frames
 - Allow to create application-specific frames, by including relevant IEs

Cont..

Multi purpose Frame

MAC wise frame format, differentiate on Information Elements (IE)

MAC Performance Metric

- To provide feedback on channel quality to upper layers
- IP protocol may implement dynamic fragmentation of datagrams depending on the channel conditions

Fast Association (FastA)

- Allows a node to associate in a reduced amount of time
- Critical application gives priority to latency over energy

TSCH Mode

Topology independent

Time slotted access

- Increase throughput by eliminating collision among competing nodes
- Predictable and bounded latency

Multi-channel communication

- More nodes exchange their frames at the same time
 - ✓ Increases network capacity

Channel hopping

- Mitigates the effects of interference and multipath fading / multipath interference
 - ✓ Improve reliability

- So, TSCH provides
 - increased network capacity,
 - high reliability, and
 - predictable latency,
 - while maintaining very low duty cycles

Slotframe Structure

Figure 22b—Timeslot diagram of acknowledged transmission

Synchronization

- ➢ In each slotframe, EB is broadcasted by PAN Coordinator or other FFDs
 - For network advertisement and synchronization
 - EB contains information of
 - ✓ Channel hopping, timeslot details, and slotframe information for Synchronization
- > A node can start sending its beacon only after getting a valid EB frame

- Nodes synchronize on a periodic slotframe
- Clock drift occurs due to
 - Differences in manufacturing, temperature and supply voltage
 ✓ Clocks of different nodes typically pulse at a slightly different frequency
- Nodes need to periodically re-synchronize
 - Frame-based synchronization
 - ACK-based synchronization

channelOffset

slotOffset

Slotframe

15

Channel (f)

0

0 1

Channel Hopping

The channel offset is translated in an operating frequency f using

 $f = F\{(ASN + chOf) \mod n_{ch}\}; \quad ASN = k \cdot S + t$

- ASN (absolute slot number) : total # of slots elapsed since the network was deployed
- n_{ch}: number of physical channels presently available to consider

ASN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

F is implemented as a look-up-table containing the set of available channels

2 3

3

3

4

k : count of slotframe cycle since the start of the network

2 3

2

0

- S : slotframe size
- t : timeslot in a slotframe

2 3 0 1

2 3 0

➤Max. no. of available channel =16

Each channel is identified by a channelOffset

Channel could be blacklisted because of low quality

2(3)0 1

2 3

t

12

Link and Schedule

Link: Pairwise assignment of a directed communication between devices in a specific slot, with a given channel offset

Dr. Manas Khatua

- Link is denoted by [t, chOf]
 - *t* is timeslot no. in the slotframe
 - chOf is channel offset
- Two types of Link
 - Dedicated links
 - ✓ Direct access
 - ✓ One transmitter One receiver
 - ✓ Generally used for Data Packet
 - Shared links
 - ✓ TSCH CSMA-CA protocol
 - ✓ Multiple transmitters/receivers
 - ✓ Generally used for Control Packet

B→A

2

 $D \rightarrow A$

3

L→B

→D

E→C G→C

Channel Offset

3

2

 $H \rightarrow D$

C→A

TSCH CSMA/CA

IEEE 802.15.4 default CSMA/CA v/s TSCH CSMA/CA algorithm

	802.15.4 CSMA/CA	TSCH CSMA/CA
Backoff Mechanism	transmitting node waits for a random backoff time before trying to transmit	backoff mechanism is activated only after the node has experienced a collision. By default no backoff
Backoff unit duration	320µs (~20 symbol duration)	corresponds to a slot duration (~10ms)
Clear Channel Assessment (CCA)	each node performs CCA to check the channel state, before performing transmission	CCA is used to avoid the packet transmission if a strong external interference is detected. Internal collision is not possible due to TSCH.
Packet dropping	If the sender consecutively found channel busy for <i>macMaxCSMABackoffs</i> times	only if it reaches the maximum number of retransmissions i.e., <i>macMaxFrameRetries</i>

TSCH CSMA/CA

See the IEEE 802.15.4 – 2015 standard to get this flowchart

Network Formation

- PAN coordinator starts the process of network formation by sending EB frame
 - Network advertisement
- EBs are special frames containing
 - Synchronization information
 - ✓ allows new devices to synchronize to the network
 - Channel hopping information
 - ✓ allows new devices to learn the channel hopping sequence
 - Timeslot information
 - ✓ describes when to expect a frame transmission and when to send an acknowledgment
 - Initial link and slotframe information
 - ✓ allows new devices to know:
 - \circ when to listen for transmissions from the advertising device
 - $\circ~$ when to transmit to the advertising device

Cont..

A new node starts listening for EB on a certain frequency

Upon receiving an EB

- The MAC layer notifies the higher layer
- The higher layer initializes the slotframe and links
 ✓ Using information in the received EB message
- Switches the device into TSCH mode
 - ✓ At this point the device is connected to the network
- The device allocates communication resources
 ✓ (i.e., slotframes and links)
- and starts advertising, on its turn
- the 802.15.4e standard did not define the EB advertising policy.

Network Formation Goals

Optimizing the network formation process

- Synchronized communication schedule consumes less energy of nodes by reducing duty cycle
- Minimum Joining time
 - Devices must keep the radio ON during the joining phase
 - EBs should be sent frequently to reduce waiting time

Minimize EB transmissions

- Frequent EB transmission consumes more communication resources
- Also Increases energy consumption at network and node level

A. Kalita and M. Khatua, "6TiSCH – IPv6 Enabled Open Stack IoT Network Formation: A Review", *ACM Transactions on Internet of Things*, Volume 3, Issue 3, Article No. 24, pp. 1-36, 2022.

TSCH Link scheduling

A difficient intervention

- Assignment of unique link to node for data transmission
- It is challenging in dynamic network
 - Node join / leave in between
 - Traffic rate changes in between
- IEEE 802.15.4e standard does not specify how to derive an appropriate link schedule
- Existing multi-channel scheduling schemes are not suitable for TSCH networks
 - They do not allow per-packet channel hopping
 - Not for resource-constrained nodes
 - They are not efficient in terms of channel utilization

Cont..

Centralized Scheduling

- Link schedule computed and distributed by a special node
 - ✓ Network coordinator
 - ✓ Based on information received by all the nodes of the network
 - ✓ Link schedule has to be re-computed and re-distributed every time a change in the operating conditions occurs
 - ✓ Not good for dynamic network and large scale network

Distributed Scheduling

- Link schedule is computed autonomously by each node
 - ✓ Based on local, partial information exchanged with its neighbors
- Limited Overhead
 - ✓ Suitable for energy-constrained nodes
- Good choice for dynamic network and large scale network

Autonomous Scheduling

- No negotiation is used to create the TSCH schedule
- Only used information from routing protocol (RPL)
- Nodes autonomously calculate their cell usage plan based on the RPL structure.
 - ✓ Does not require any central coordinator, negotiation, signaling or any path reservation

negotiate schedule

infer schedule from local state (topology)

TSCH: Open Issues

Network Formation

- Current solution inefficient for
 - Energy consumption
 - Formation time
 - Mobile Objects

Security

- Selective Jamming (SJ) attacks
- Secure Beacons and Different Frequency hopping sequence

TSCH network synchronization

Energy consumption

TSCH slot/cell scheduling

Guaranteed QoS

Lessons Learned

- ✓ Limitations of IEEE 802.15.4
- ✓ IEEE 802.15.4e
 - ✓ MAC Modes
 - ✓ Functional Enhancements
- ✓ IEEE 802.15.4 TSCH
 - Functionalities
 - TSCH CSMA/CA
 - Network Formation
 - Link Scheduling

Thanks!

