CS578: Internet of Things

6LoWPAN: IPv6 over 802.15.4

Initial RFC: https://datatracker.ietf.org/doc/rfc4944/

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

"Peace comes from within. Do not seek it without." - Gautama Buddha

6LoWPAN

IETF formed 6LoWPAN WG in 2004 to design the Adaptation Layer

6LoWPAN: IPv<u>6</u> over <u>Lo</u>w-power <u>W</u>ireless <u>P</u>ersonal <u>A</u>rea <u>N</u>etworks

How to carry IPv6 packet efficiently within small link layer frames such as IEEE 802.15.4?

- IPv6 MTU to be at least 1280 bytes in length.
- 802.15.4's standard packet size of **127 octets**.

D Primary goal

- even the smallest devices should have access to the IP
 - smallest devices → low-power devices with limited processing capabilities.

□ 6LoWPAN defined

encapsulation and header compression mechanisms

□ 6LoWPAN **Applications**:

• General Automation, Home automation, Smart Grid, Industrial monitoring, Smart Agriculture, etc.

6LoWPAN Edge Router

By communicating natively with IP, 6LoWPAN networks are connected to other networks simply using IP routers at the edge.

Edge router

Dual Stack in Edge router

Source: https://www.ti.com/lit/wp/swry013/swry013.pdf?

6LoWPAN Architecture

The **utility of a mesh network** over other network types, such as a hub-and-spoke network, is that if a node is too far away from the hub, it can still communicate via a closer node until it reaches a router.

Other Advantages:

- Increased stability by avoiding single point failure
- Increased range by using multi-hop communication
- Direct communication between nodes
- Less power is needed for each node as all nodes <u>need not</u> send signal to central access point

Source: <u>https://www.e-spincorp.com/what-is-6lowpan-and-its-functions/</u>

BENEFITS

- Ideal to create mesh networks
- Direct connectivity to the Internet
- Low power & Low data rates

What is mesh network?

A mesh network is a network in which a device or node is linked with all other nodes or with a sub-set of nodes directly.

6LoWPAN Advantages

Open IP Standard

- Use open standard such as TCP, UDP, HTTP, CoAP, MQTT, WebSocket
- End-to-End IP addressable nodes
- No gateway needed.
 - A router connects the 6LoWPAN network to IP

Mesh Routing

- One-to-many / many-to-one routing
- Robust and Scalable
- Self healing
- Flexible

Multiple PHY Support

- Freedom of frequency band and physical layer
- Can be used across multiple communication platform
- (ex. Ethernet / WiFi / 802.15.4 / Sub-1 GHz)
- Interoperability at the IP
 level

RFCs

6LoWPAN IETF group developed a **base specification RFC 4944** → "Transmission of IPv6 Packets over IEEE 802.15.4 Networks"

This document specifies an IPv6 **Header Compression** format for IPv6 packet delivery in 6LoWPAN This document describes simple optimizations to IPv6 **Neighbor Discovery**, its **addressing schemes**, and duplicate address detection for 6LoWPAN RFC4919: This document describes the overview, assumptions, problem statement, and goals for transmitting IP over IEEE 802.15.4 networks.

RFC6568: This document investigates potential application scenarios and use cases for LoWPANs

RFC6606: This document provides the problem statement and design space for 6LoWPAN routing. Defines how 6LoWPAN formation and multi-hop routing could be supported.

Motivation to use IPv6

Benefits of IP over IEEE 802.15.4 Network (RFC 4919):

- > The pervasive nature of IP networks allows use of existing Infrastructure.
- IP-based technologies already exist, and are well-known
- Open and freely available specifications (v/s. Closed proprietary solutions).
- **Tools** for diagnostic, management already exist.
- IP-based devices can be connected readily to IP-based networks, without gateways or proxies.

- Network ID + Interface ID
- Plenty of addresses; easy to allocate and manage

- Auto-configuration and Management
 - ICMPv6
- Integrated bootstrap and discovery
 - Neighbors, routers, DHCP
- Global scalability
 - 128 Bit Addressing = 3.4*10^38 unique addresses

IPv6 Challenges

1. Header Size Calculation

Frame Header (25)	LLSEC (21)	IPv6 Header (40)	UDP (8)	Payload (33)
-------------------	------------	------------------	------------	--------------

- IPv6 header: 40 octets
- UDP header: 8 octets
- > 802.15.4 MAC frame header: up to 25 octets (with null security)

or 25+21=46 octets (with AES-CCM-128)

- ✓ With 802.15.4 frame size of 127 octets, we have following space left for application data!
 - 127-(8+40+25) = 54 octets (in case of null security)
 - 127-(8+40+46) = 33 octets (in case of AES-CCM-128)

2. IPv6 Maximum Transmission Unit (MTU) Requirements

- ✓ IPv6 requires that links should support an MTU of 1280 octets
 - So, Link-layer fragmentation & reassembly is needed
- 3. IP assumes that devices are always 'ON' i.e. active
- \checkmark But embedded devices may not have enough power and duty cycles

4. Multicast support

✓ IEEE 802.15.4 & other low power radios do not support multicast (as it is expensive)

Main Goals of 6LoWPAN Design

- Define adaptation layer to match IPv6 MTU requirements
 - by fragmentation/reassembly
- Specify methods to do IPv6 Address formation
 - by stateless address auto configuration
- Specify/use header compression schemes.
 - by specific compression techniques
- Methods for mesh broadcast/multicast below IP
 - by layer 2 networking and forwarding mechanism

Adaptation Layer

It mainly performs the following functionalities:

- ✓ Header Compression -> Compresses 40B IPv6 and 8B UDP headers
- ✓ **Fragmentation & Reassembly ->** when MTU of 802.15.4 and IPv6 does not match.
- Stateless Autoconfiguration -> Devices inside 6LoWPAN generate their own IPv6 address

		32	Bits	
1	В	8	8	8
Version	Header Length	Type of Service or DiffServ		Total Length
	Ident	ifier	Flags	Fragment Offset
Time	to Live	Protocol	Header Checksum	
		Source	Address	
		Destinatio	on Address	
		Options		Padding

IPv4 header

Version 4-bits	Priority/ Traffic Class _{8-bits}	Flow Label 20-bits		
Payload Length 16-bits		Next Header 8-bits	Hop Limit 8-bits	
Source Address 128-bits				
Destination Address 128-bits				
Extension headers 1				

IPv6 header (min 40 Byte)

LoWPAN Encapsulation

LoWPAN encapsulation are the payload in the IEEE 802.15.4 MAC protocol data unit (PDU).

Stacked Headers

- 6LoWPAN uses concept of
 - stacked headers
 - ✓ when dispatch header is used to indicate the sub-header type that immediately follows
 - extension headers
 - ✓ when the next header field is used to indicate the header type that immediately follows
- 6LoWPAN headers define the capability of each.
- Few 6LoWPAN headers are :
 - Mesh addressing,
 - Fragmentation,
 - Header compression,

IEEE 802.15.4 header	IPv6 header compression	IPv6 payload		
IEEE 802.15.4 header	Fragment header	IPv6 header compression	IPv6 payload	
				-
IEEE 802.15.4 header	Mesh addressing header	Fragment header	IPv6 header compression	IPv6 payload

6LoWPAN Headers

First byte of each header (i.e. dispatch byte) identifies the nature of each header

Bit Pattern	Short Code	Description
00 xxxxxx 00	NALP	Not A LoWPAN Packet
01 000001	IPv6	uncompressed IPv6 addresses
01 000010	LOWPAN_HC1	HC1 Compressed IPv6 header
01 010000	LOWPAN_BC0	BC0 Broadcast header
01 111111	ESC	Additional Dispatch octet follows
10 xxxxxxx	MESH	Mesh routing header
11 000xxx	FRAG1	Fragmentation header (first)
11 100xxx	FRAGN	Fragmentation header (subsequent)

Dispatch Type & Header

- Dispatch type defined by 1st & 2nd bits
 - ✓ Dispatch means→ identifies type of header immediately following the Dispatch Header
 - ✓ Type-specific header \rightarrow it is determined by full Dispatch Header.

Bit Pattern	Short Code	Description
00 xxxxxx 00	NALP	Not A LoWPAN Packet
01 000001	IPv6	uncompressed IPv6 addresses
01 000010	LOWPAN_HC1	HC1 Compressed IPv6 header
01 010000	LOWPAN_BC0	BC0 Broadcast header
01 111111	ESC	Additional Dispatch octet follows
10 xxxxxxx	MESH	Mesh routing header
11 000xxx	FRAG1	Fragmentation header (first)
11 100xxx	FRAGN	Fragmentation header (subsequent)

- Each header in the stack starts with
 - a header type field, and
 - followed by zero / more type specific header fields

A LoWPAN encapsulated IPv6 datagram:

| IPv6 Dispatch | IPv6 Header | Payload |

A LoWPAN encapsulated LOWPAN_HC1 compressed IPv6 datagram:

| HC1 Dispatch | HC1 Header | Payload |

A LoWPAN encapsulated LOWPAN_HC1 compressed IPv6 datagram that requires mesh addressing:

| Mesh Type | Mesh Header | HC1 Dispatch | HC1 Header | Payload |

A LoWPAN encapsulated LOWPAN_HC1 compressed IPv6 datagram that requires both mesh addressing and fragmentation:

+----+ | M Typ | M Hdr | F Typ | F Hdr | HC1 Dsp | HC1 Hdr | Payload | +----+

Mesh Addressing Type & Header

- ✓ $1^{st} \& 2^{nd}$ bits = 10.
 - ✓ OA : link layer address of originator.
 - ✓ FDA : link layer address of final-destination
 - ✓ V: 0 => if OA is 64-bit EUI address
 1 => if OA is16-bit short address
 - ✓ F: 0 => if FDA is 64-bit EUI address
 1 => if FDA is16-bit short address
 - ✓ HopsLft: 4 bit, decremented by each forwarding node

Fragmentation Type & Header

Dispatch: identifies the type of the immediate next headers Datagram size (11 bits): encode the size of entire IP packet (after IP layer fragmentation, if any).

Datagram tag (8 bits): same for all *link fragments* of a payload, but different for two IPv6 payload. Datagram offset (11 bits): present only in subsequent fragments

15-10-2023

Fragmentation and Reassembly

Fragmentation Principles (RFC 4944)

When an IPv6 packet exceeds link-layer payload size then segments the packet into fragments.

6LoWPAN packet structure of FRAG1 and FRAGN

Tag: it is used to identify all fragments of a IPv6 datagram

Offset: It identifies the relative position of the received fragment from the beginning of the payload datagram to allow out-of-sequence delivery.

- ✓ Only the 1st fragment carries end-to-end routing information.
- \checkmark 1st fragment carries a header that includes :
 - datagram size, datagram tag.
- ✓ Subsequent fragments carry
 - datagram size, datagram tag, offset.

✓ Time limit for reassembly is 60 seconds.

✓ For a lost fragment, we need to resend entire set of fragments.

Addressing in 6LoWPAN

+

128-bit IPv6 address Interface ID (IID)

Identifies the network you are on and where it is globally

64-bit IID

- identifies the network interface
- must be unique for that network
- typically formed statelessly from the interface MAC address
- There are different kinds of IPv6 addresses
 - ✓ Loopback (0::1) and Unspecified (0::0)
 - ✓ Unicast with global (e.g. 2001::) or link-local (FE80::) scope
 - ✓ Multicast addresses (starts with FF::)
 - ✓ Etc.

Link-local address in 6LoWPAN

A link-local address is a network address that is valid only for communications within the network segment or the broadcast domain that the host is connected to.

In IPv6, traditionally, FE80::/10 is used to represent link-local address.

How does a host generate a *link-local address* in 6LoWPAN?

✓ Generated when a computer runs IPv6 boots up

- Valid only for communication on a local network

64-bit IID generation from MAC address

Generating IID (EUI-64) from 48-bits MAC address (i.e. device address).

All 802.15.4 devices have an IEEE EUI-64 address typically. But 16-bit short addresses are also possible.

How to form the IID if an IoT device has 16-bit short address?

In these cases, a "pseudo 48-bit address" is formed first, and then EUI-64 interface id is formed from the pseudo 48-bit MAC address.

- 1st step: concat <16 bit PAN ID :16 zero bits>
- 2nd step: concat <32 bits in step:16 bit short address>
- 3rd step: 48 bits MAC address => 64 bit Interface ID

Stateless Auto-Configuration in IPv6

- It defines
 - ✓ how to obtain an IPv6 interface identifier (IID) from other known information
 - > Uses both local and non-local information to generate its address.

Note: The **stateful** auto-configuration protocol allows hosts to obtain addresses and other configuration information from a server. So, stateless and stateful complement each other.

✓ Advantages:

- Allows a node to connect to the Internet without DHCP server
- Helps in header optimization

IPv6 address:

- ✓ Addresses are 128 bit long
 - Divided into 8 hextets, each hextet is 16 bit
 - Each character is 4 bit, a nibble
 - A common configuration is a
 - 48-bit network prefix, 16-bit subnet mask, 64-bit host address/identifier.
 - e.g., 2001:1234:ABCD:0001:1023:FD45:0033:0002

Cont... (for IPv6)

Steps in stateless auto-configuration to obtain IPv6 address (128 bits):

- ✓ **Host** send Router Solicitation (RS) to all routers
- ✓ **Routers** reply with Router Advertisement (RA)
 - announces prefix used on link.
- ✓ Host generates address
 - by combining the prefix received and host identifier (EUI-64)
- So, IPv6 address (128 bit) is generated
 Link-local address
- ✓ Hosts performs DAD activity
 - Duplicate Address Detection (DAD)
- ✓ If successful (i.e. not duplicate one), address becomes active

6LoWPAN Header Compressions

HC1 (for IP) and HC2 (for UDP) compressions

- Assume common values for header fields and define compact forms.
- Reduce header size by omission

Omit headers that...

- can be reconstructed from L2 layer headers (i.e. redundant)
- contains information not needed/used in present context (i.e. unnecessary)

Priority / Traffic Class: indicates the class or priority of IPv6 packet

Flow Label: used by source to label the packets belonging to the same flow in order to request special handling by intermediate routers

Payload Length: size (in octets) of the rest of the packet that follows the IPv6 header

Next header: type of header that immediately follows the IPv6 header

Hop limit: Decremented by one by each node that forwards the packet.

Source & Destination addresses: IPv6 addresses

Compression: HC1

Inv6 Header compression

HC1 Compressed IPv6 Header

- ✓ IPv6 address <prefix64 || Interface ID64> for nodes in IEEE 802.15.4 subnet derived from the link address.
 - PAN ID maps to a unique IPv6 prefix
 - Interface ID64 generated from 48-bit MAC or 16-bit short address
- ✓ HopLimit is the only incompressible IPv6 header field.

6LoWPAN: Compressed IPv6 Header

IEEE 802.15.4 Frame Format

HC1 Encoding Field Values

IPv6 source address (bits 0 and 1):

- 00: PI, II
- 01: PI, IC
- 10: PC, II
- 11: PC, IC

IPv6 destination address (bits 2 and 3):

- 00: PI, II
- 01: PI, IC
- 10: PC, II
- 11: PC, IC

- PI: Prefix carried in-line
- PC: Prefix compressed (link-local prefix assumed).
- II: Interface identifier carried in-line
- IC: Interface identifier compressed

Traffic Class and Flow Label (bit 4):

- 0: not compressed; full 8 bits for Traffic Class and 20 bits for Flow Label are sent
- 1: Traffic Class and Flow Label are zero

Next Header (bits 5 and 6):

- 00: not compressed; full 8 bits are sent
- 01: UDP
- 10: ICMP
- 11: TCP

HC2 encoding (bit 7):

- 0: No more header compression bits
- 1: HC1 encoding immediately followed by more header compression bits per HC2 encoding format.

HC2:Compresses UDP Headers

UDP header format [8 Byte]

Source port	Destination port
UDP length	Checksum

✓ Source port = P+4bits, P=61616 ✓ Destination port= P+4bits, P=61616 ✓ 1 Byte

✓ Length derived from IPv6 length
 ✓ Checksum is always carried inline
 2 Byte

Reduced to

Limitations of HC1 & HC2

- LoWPAN_HC1 & LoWPAN_HC2 are insufficient for most practical uses.
 Effective only for link-local unicast communication,
- ✓ So, they are usually not used for application layer data traffic in present times

So, <u>RFC 6282</u> was proposed as an advancement

- Defines LoWPAN_IPHC
 - Not only link-local, compression for global and multicast addresses too
 - Compress header fields with common values:
 - version, traffic class, flow label, hop-limit
- **Defines LoWPAN_NHC** (for arbitrary next headers)
 - Adds ability to omit UDP checksum
- Possible to invent your own scheme if you have repeating usage patterns in your use case

The Header Size Solution

The **48-byte (IPv6 + UDP header)** could in the best cases be reduced to 6 bytes.

Routing Mechanisms

6LoWPAN supports two routing mechanisms (RFC 6606):

- Mesh-under
- Route-over

Mesh-under

- ✓ Uses L2 addresses to forward data
- Only edge router is the IP router; other intermediate devices are meshunder forwarder
- ✓ Individual fragments may take different paths.
- $\checkmark\,$ Suitable for small and local networks

An Example of a Mesh-Under 6LoWPAN

Route-over

- ✓ Uses L3 addresses to forward data.
- Each hop acts as an IP router or 6LoWPAN router.
- ✓ All fragments are sent to same path as routing decision taken on per packet basis
- ✓ Suitable for all sized networks

An Example of a Route-Over 6LoWPAN

When multiple LoWPANs are formed with globally unique IPv6 addresses in the 6LoWPANs, and device "a" of LoWPAN [A] wants to communicate with device "b" of LoWPAN [B], the normal IPv6 mechanisms will be employed.

For route-over, the IPv6 address of "b" is set as the destination of the packets, and the devices perform IP routing to the 6LBR for these outgoing packets.

For mesh-under, there is one IP hop from device "a" to the 6LBR of [A], no matter how many radio hops they are apart from each other. This, of course, assumes the existence of a mesh-under routing protocol in order to reach the 6LBR.

Neighbour Discovery (ND) Protocol

- This helps the node to determine the neighbors in the vicinity and to select the best parent available.
- Uses ICMP Message
 - RS (Router Solicitation), RA (Router Advertisement)

NS (Neighbour Solicitation), NA (Neighbour Advertisement)

Prefix Information (PIO) : The prefix of the IPv6 address

Context Option (CO) : The compression technique to be used.

Authoritative Border Router Option (ABRO) : Border Router address

Address Registration Option (ARO)

: link layer address of the node, & direct reachability to node

Router Solicitation and Advertisement

- 1—ICMP Type = 133 (RS)
- Src = link-local address (FE80::1/10)

```
Dst = all-routers multicast address
(FF02::2)
```

Query = please send RA

2-ICMP Type = 134 (RA)

Src = link-local address (FE80::2/10)

Dst = all-nodes multicast address (FF02::1)

Data = options, subnet prefix, lifetime, autoconfig flag

- Router Solicitations (RS) are sent by booting nodes to request RAs for configuring the interfaces
- Routers send periodic Router Advertisements (RA) to the all-nodes multicast address

Neighbor Solicitation and Advertisement

6LoWPAN Security

Security is also important for IOT systems

TCP/IP Protocol Stack

- ✓ It takes advantage of IEEE 802.15.4 link layer security
- ✓ Also TLS (Transport Layer Security) mechanisms works for 6LoWPAN systems

6LoWPAN Protocol Stack

Lessons Learned

- ✓ Motivation behind the development of Adaptation Layer
- ✓ 6LoWPAN
 - ✓ Architectures
 - ✓ RFCs
 - ✓ Stacked headers concept
 - ✓ Dispatch Header
 - ✓ Fragmentation Header
 - ✓ Mesh Routing Header
 - ✓ Compression Header
- ✓ Address Auto-configuration
- ✓ Header Compression
- ✓ Neighbour Discovery
- ✓ Data Forwarding : Mesh under & Route over
- ✓ 6LoWPAN Security

Thanks!

