
CS578: Internet of Things

MQTT:
Message Queuing Telemetry Transport

11-10-2019 Dr. Manas Khatua 1

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

Dr. Manas Khatua

Assistant Professor, Dept. of CSE, IIT Guwahati

E-mail: manaskhatua@iitg.ac.in

“Lead us from unreal to real; from darkness into light; from death to immortality; Om Shanti Shanti Shanti.”“Lead us from unreal to real; from darkness into light; from death to immortality; Om Shanti Shanti Shanti.”

mailto:manaskhatua@iitg.ac.in
mailto:manaskhatua@iitg.ac.in

MQTT : Message Queueing Telemetry Transport protocol.

• Reliable, Lightweight, Cost-effective protocol that transports messages between devices.

• Suited for the transport of telemetry data (sensor and actuator data)

211-10-2019 Dr. Manas Khatua

What is MQTT?

• Invented by Andy Stanford Clark of IBM

and Arlen Nipper of Arcom (now Eurotech)

in 1999

• Used by real-life IoT frameworks:

• Amazon Web Services (AWS),

• IBM WebSphere MQ,

• Microsoft Azure IoT,

• Facebook Messenger,

• etc.

Example:

• Light sensor continuously publish sensor data to the broker.

• Building control application subscribes to light sensor data and so receives it from the broker. Then

it decides to activate Camera.

• The application sends an activation message to the camera node (i.e. actuator) through the broker.

MQTT Architecture

 Publish / Subscribe (PubSub) model
 Decoupling of data producer (publisher) and data consumer (subscriber) through topics (message queues)

 Asynchronous communication model with messages (events)
 Publisher and Subscriber need not be online at the same time

 Low overhead (2 bytes header)
 Suitable for low network bandwidth applications

 Runs on connection-oriented transport (TCP), but it will be used in conjunction with 6LoWPAN HC
(TCP header compression).

3

MQTT Characteristics

11-10-2019 Dr. Manas Khatua

• In 2013-14, MQTT was adopted

and published as an official

standard by OASIS

• OASIS: Organization for the

Advancement of Structured

Information Standard

• MQTT was mainly designed for

M2M communication

411-10-2019 Dr. Manas Khatua

Advantages of MQTT

Source: https://www.u-blox.com/en/blogs/insights/mqtt-beginners-guide

https://www.u-blox.com/en/blogs/insights/mqtt-beginners-guide

Publish & Subscribe Messaging

 A producer sends (publishes) a message (publication) on a topic (subject)
 A consumer subscribes (makes a subscription) for messages on a topic (subject)
 A message server / broker matches publications to subscriptions

Who will get the message ?
 If no matches, the message is discarded
 If one / more matches, the message is delivered to each matching subscriber/consumer

Topic
 A topic forms the namespace in hierarchical with each “sub topic” separated by /

(forward slash)
 An example topic space :

 A house publishes information about itself on:
<country>/<region>/<town>/<postalcode>/<house no>/energyConsumption
<country>/<region>/<town>/<postalcode>/<house no>/solarEnergy

• It subscribes for control commands:
<country>/<region>/<town>/<postalcode>/<house no>/thermostat/setTemp

11-10-2019 Dr. Manas Khatua 5

Wildcards

 A subscriber can subscribe to an absolute topic OR can use wildcards:

 Single-level wildcards “+” can appear anywhere in the topic string
For example:
Let the Topic: <country>/<region>/<town>/<postalcode>/<house no>/energyConsumption

 Energy consumption for 1 house in Hursley
 UK/Hants/Hursley/SO212JN/+/energyConsumption

 Energy consumption for all houses in Hursley
 UK/Hants/Hursley/+/+/energyConsumption

 Multi-level wildcards “#” must appear at the end of the string
For example:
 Details of energy consumption, solar and alarm for all houses in SO212JN

 UK/Hants/Hursley/SO212JN/#

NOTE :
 Wildcards must be next to a separator
 Wildcards cannot be used when publishing

11-10-2019 Dr. Manas Khatua 6

Cont…

 A subscription can be durable or non-durable
 Durable:

 Once a subscription is in place,
 A broker will forward matching messages to the subscriber immediately if the subscriber is

connected.
 If the subscriber is not connected, messages are stored on the server/broker until the next

time the subscriber connects.

 Non-durable / Transient (i.e. subscription ends with client session):
• The subscription lifetime is the same as the time the subscriber is connected to the server /

broker

Cont…

11-10-2019 Dr. Manas Khatua 7

 MQTT is lightweight
 because each packets consists of a 2-byte fixed header with optional variable header and

payload fields

MQTT Message Format

11-10-2019 Dr. Manas Khatua 8

• Message Type: identifies the kind of MQTT packet within a message

• DUP: Duplicate flag – indicates whether the packet has been sent previously or not

• QoS Level: it allows to select different QoS level

• Retain: this flag notifies the server to hold onto the last received PUBLISH message data

• Remaining Length: specifies the size of optional fields

Cont…

11-10-2019 Dr. Manas Khatua 9

Message header field Description / Values

Message Type (4 bits) 0: Reserved 8: SUBSCRIBE

1: CONNECT 9: SUBACK

2: CONNACK 10: UNSUBSCRIBE

3: PUBLISH 11: UNSUBACK

4: PUBACK (Publish ACK) 12: PINGREQ

5: PUBREC (Publish Received) 13: PINGRESP

6: PUBREL (Publish Release) 14: DISCONNECT

7: PUBCOMP (Publish Complete) 15: Reserved

DUP (1 bit) Duplicate message flag. Indicates to the receiver that this message may have already been received.

1: Client or server (broker) re-delivers a PUBLISH, PUBREL, SUBSCRIBE or UNSUBSCRIBE message

(duplicate message).

QoS Level (2 bits) Indicates the level of delivery assurance of a PUBLISH message.

0: At-most-once delivery, no guarantees, «Fire and Forget».

1: At-least-once delivery, acknowledged delivery.

2: Exactly-once delivery.

RETAIN (1 bit) 1: Instructs the server to retain the last received PUBLISH message and deliver it as a first message to

new subscriptions.

Remaining Length (1-4 bytes) Indicates the number of remaining bytes in the message, i.e. the length of the (optional) variable length

header and (optional) payload.

14 message types,

2 are reserved

Message Types

RETAIN=1 in a PUBLISH message instructs the server to keep the message for this topic.
When a new client subscribes to the topic, the server sends the retained message quickly.

 Typical application scenarios:
 Clients publish only changes in data, so subscribers receive the last known good value.

 Example:
 Subscribers receive last known temperature value from the temperature data topic.
 RETAIN=1 indicates to subscriber B that the message may have been published some time ago.

RETAIN

11-10-2019 Dr. Manas Khatua 11

Remaining Length (RL)

11-10-2019 Dr. Manas Khatua 12

• The remaining length field encodes the sum of the lengths of:
1. (Optional) variable length header
2. (Optional) variable length payload

• To save bits, RL is a variable length field with 1 to 4 bytes.
• The most significant bit (msb) of a length field byte has the meaning continuation bit (CB).
• If more bytes follow, it is set to 1.

RL is encoded as:: a * 1280 + b * 1281 + c * 1282 + d * 1283

and placed into the RL field bytes as follows:

7 bits

msb

MQTT QoS

11-10-2019 Dr. Manas Khatua 13

 Even though TCP/IP provides guaranteed data delivery, data loss can still occur if a TCP connection
breaks down and messages in transit are lost.

 Therefore, MQTT adds 3 quality of service (QoS) levels on top of TCP

at least once

PUBREC (REC: received)

Packet is the response to a

PUBLISH Packet

PUBREL (REL: release) Packet

is the response to a PUBREC

Packet

PUBCOMP (COMP: complete)

Packet is the response to a

PUBREL Packet.

Cont…

11-10-2019 Dr. Manas Khatua 14

QoS level 1:
• At-least-once delivery.
 Messages are guaranteed to arrive, but there may be duplicates.

 Example application: A door sensor senses the door state. It is important that door state
changes (closed->open, open->closed) are published losslessly to subscribers (e.g. alarming
function). Applications simply discard duplicate messages by comparing the message ID field.

QoS level 2:
 Exactly-once delivery.
 This is the highest level that also incurs most overhead in terms of control messages and the need

for locally storing the messages.
 Exactly-once is a combination of at-least-once and at-most-once delivery guarantee.

 Example application: Applications where duplicate events could lead to incorrect actions, e.g.
sounding an alarm as a reaction to an event received by a message. So, it avoids duplicate.

QoS level 0:
 At-most-once delivery («best effort»).
 Messages are delivered according to the delivery guarantees of the underlying network (TCP/IP).

 Example application: Temperature sensor data which is regularly published. Loss of an individual
value is not critical since applications (i.e. consumers of the data) will anyway integrate the values
over time

QoS level 0:
 With QoS level 0, a message is delivered with at-most-once delivery semantics («fire-and-forget»).

PUBLISH msg flow

11-10-2019 Dr. Manas Khatua 15

QoS level 1:
 QoS level 1 affords at-least-once delivery semantics. If the client does not receive the PUBACK in

time, it re-sends the message.

QoS level 2:
 QoS level 2 affords the highest quality delivery semantics exactly-once, but comes with the cost of

additional control messages.

Cont…

11-10-2019 Dr. Manas Khatua 16

Case 1:
• Session/connection and subscription setup with clean session flag = 1 (non-durable subscription)

Example: CONNECT & SUBSCRIBE msg flow

11-10-2019 Dr. Manas Khatua 17

Case 2:
• Session/connection and subscription setup with clean session flag = 0 (durable subscription)

Cont…

11-10-2019 Dr. Manas Khatua 18

MQTT-SN (MQTT for sensor networks) is a variant of MQTT that has been optimized for
use in low power environments such as sensor networks, as the name suggests.

SN adds extra functionality for use cases where lower power is required.

• QoS mode -1: allows for fire-and-forget messaging

• Topic aliases: allows for simplified publishing and reduced data overheads

• Sleep mode (disconnected sessions): allows messages to be queued on the broker while the
remote Thing or device is powered off

What is MQTT-SN?

11-10-2019 Dr. Manas Khatua 19

Send Sensor values to Cloud using MQTT Protocol:

Demo using MQTT Protocol

11-10-2019 Dr. Manas Khatua 20

• The Ultrasonic Sensor
reads the distance
between itself & the
object

• Sends the measured
distance to the cloud
server using MQTT
protocol.

• Here, the cloud is
ThingSpeak.com

Hardware

•ESP8266 NodeMCU

•Breadboard

•Jumper Wires

•HC-SR04 Ultrasonic Sensor

•Raspberry Pi

Software

•Arduino IDE

•Fritzing

Cloud Platform

•ThingSpeak Account

ThingSpeak is an IoT analytics PaaS that

allows you to aggregate, visualize, and

analyze live data streams

Requirements

11-10-2019 Dr. Manas Khatua 21

The ESP8266 NodeMCU requires certain libraries for optimal use of the board.

• PubSubClient – It is required for the MQTT Messaging.

• ThingSpeak – It is a communication library for supporting to send data to the cloud.

• ESP8266WiFi – It is required to use the Wi-Fi capabilities of the NodeMCU.

Step to install above libraries for the programming part:

• Open Arduino IDE

• Move on to Tools

• Manage Libraries…

• Search and install the above mentioned libraries

ESP8266 NodeMCU: Libraries

11-10-2019 Dr. Manas Khatua 22

Setup Connections

11-10-2019 Dr. Manas Khatua 23

TP-LINK_ED34

MQTT Server
(Broker)

"192.168.0.104"

MQTT Client
(Publisher)

Publish on

Topic “distance”

Cloud

Server

Subscribe to

Topic “distance”

MQTT Client
(Subscriber)

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

#define TRIGGER D6
#define ECHO D8
long duration, cm;

const char* ssid = "TP-LINK_ED34";
const char* password = "48193580";

//Raspberry Pi IP Address
const char* mqtt_server = "192.168.0.104";

WiFiClient espClient;

PubSubClient client(espClient);

Programming ESP8266

11-10-2019 Dr. Manas Khatua 24

void setup_wifi () {
delay(10);
Serial.println();
Serial.print("Connecting to ");
Serial.println(ssid);

WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {

delay(500);
Serial.print(".");

}
Serial.println("");
Serial.print("WiFi connected - ESP IP address: ");

Serial.println(WiFi.localIP());
}

void reconnect ()
{

// Loop until we're reconnected
while (! client.connected ()) {

Serial.print("Attempting MQTT connection...");

if (client.connect("ESP8266Client"))
{

Serial.println("connected");
client.subscribe("esp8266/4");

}
else {

Serial.print("failed, rc=");
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
delay(15000);

}
}

}

Cont…

11-10-2019 Dr. Manas Khatua 25

void callback (String topic, byte* message,
unsigned int length)

{
Serial.print("Message arrived on topic: ");
Serial.print(topic);
Serial.print("Message: ");

String messageTemp;
for (int i = 0; i < length; i++) {

Serial.print((char)message[i]);
messageTemp += (char)message[i];

}
Serial.println();

}

A callback is a function that is passed

as an argument to another function.

void loop () {
if (! client.connected ()) {

reconnect();
}
if(! client.loop())

client.connect("ESP8266Client");

Cont…

11-10-2019 Dr. Manas Khatua 26

digitalWrite(TRIGGER, LOW);
delayMicroseconds(2);
digitalWrite(TRIGGER, HIGH);
delayMicroseconds(10);
digitalWrite(TRIGGER, LOW);

duration = pulseIn(ECHO, HIGH);

cm = duration / 29 / 2;
static char distanceincm[7];

dtostrf(cm, 6, 2, distanceincm);

client.publish("/esp8266/distance", distanceincm);

Serial.print("Distance: ");
Serial.print(cm);
Serial.print("cm");
Serial.println();
delay(5000);

}

void setup () {
Serial.begin(115200);
pinMode(TRIGGER,OUTPUT);
pinMode(ECHO,INPUT);

setup_wifi ();

client.setServer (mqtt_server, 1883);

client.setCallback (callback);
}

import paho.mqtt.client as mqtt
import urllib3 # powerful HTTP client for Python

myAPI = 'SMLI56456456RHUB'
baseURL = 'https://api.thingspeak.com/update?api_key=%s'

% myAPI
val=''
http = urllib3.PoolManager()

def on_connect (client, userdata, flags, rc):
print("Connected with result code "+ str(rc))
client.subscribe("/esp8266/distance")

def on_message (client, userdata, message):
print("Received message '" + str(message.payload) +

"' on topic '" + message.topic)
distance = 0
if message.topic == "/esp8266/distance":

print("Distance updated")
distance = str(message.payload, 'UTF-8')
distance = distance.strip()
print(distance)
global val
val = distance

Programming R. Pi

11-10-2019 Dr. Manas Khatua 27

if val != '' :
conn = http.request('GET', baseURL +'&field1=%s'%(val))
print(conn.status)
conn.read()
conn.close()
val = ''

def main():
mqtt_client = mqtt.Client()
mqtt_client.on_connect = on_connect
mqtt_client.on_message = on_message

mqtt_client.connect ('localhost', 1883, 60)
Connect to the MQTT server and process messages in a

background thread.
mqtt_client.loop_start()

if __name__ == '__main__':
print('MQTT to InfluxDB bridge')
main()

ThingSpeak Cloud Dashboard

11-10-2019 Dr. Manas Khatua 28

29

Thanks!

11-10-2019 Dr. Manas Khatua

