Internet of Things (IoT)

6TiSCH Technology

6TiSCH Survey Papers:

https://ieeexplore.ieee.org/document/8823863 https://doi.org/10.1016/j.comnet.2024.110759

Dr. Manas Khatua

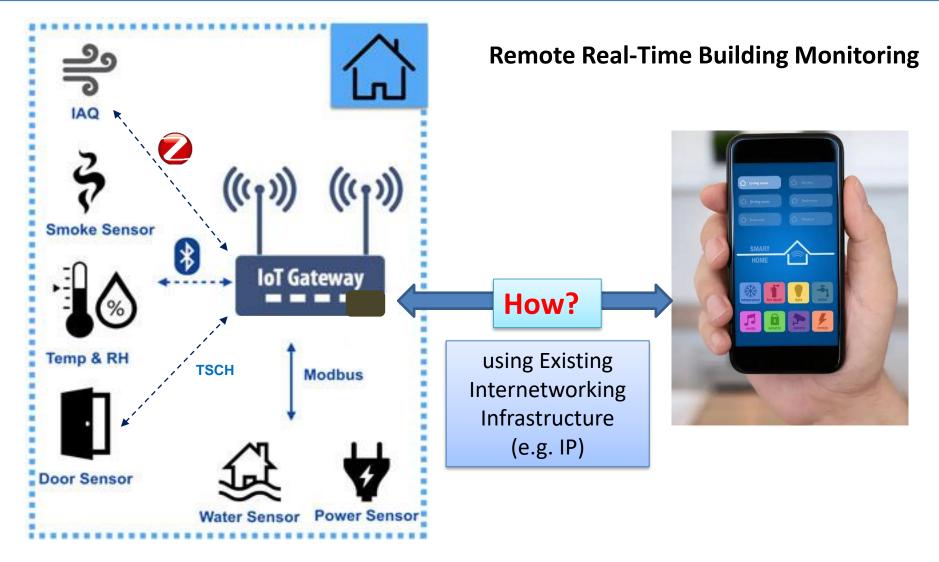
Associate Professor

Dept. of CSE, IIT Guwahati

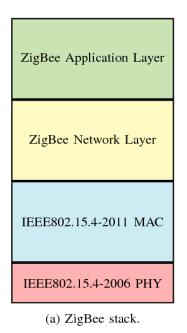
E-mail: manaskhatua@iitg.ac.in

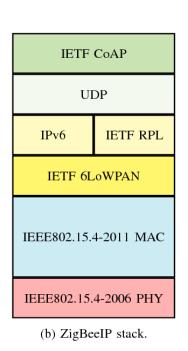
IoT Access Technologies

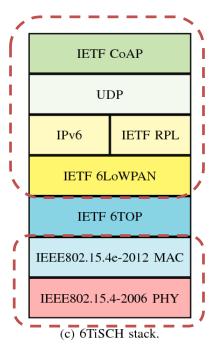
there are many IoT technologies in the market today



Application Viewpoint






6TiSCH Working Group

- 6TiSCH Working Group created by IETF in October 2013
- Goal: To integrate TSCH with the IPv6 through the IETF upper stack
 - To enable IPv6 over TSCH mode of IEEE 802.15.4e
 - Defining a new functional entity in charge of TSCH scheduling

Survey Article: "IETF 6TiSCH: A Tutorial" https://ieeexplore.ieee.org/document/8823863

6TiSCH Architecture (RFC 9030)

- Considers low-power lossy-network (LLN)
- ➤ Allow more than 1000 nodes
- Nodes are in same IPv6 subnet
- 6LoWPAN header compression (HC) is used to transmit packet

- Presence of high-speed backbone (e.g. WiFi mesh) to connect all nodes
- Backbone is connected to the Internet through a Gateway
- Constrained nodes are attached to backbone through backbone router (BBR) or 6LBR

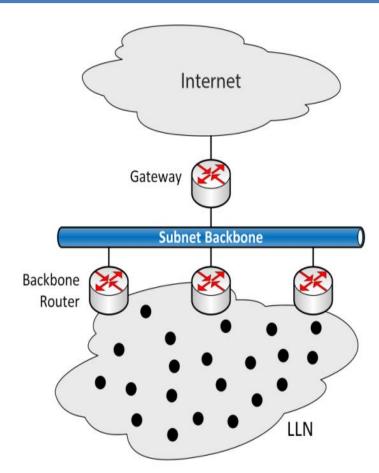


Fig. 6TiSCH Architecture

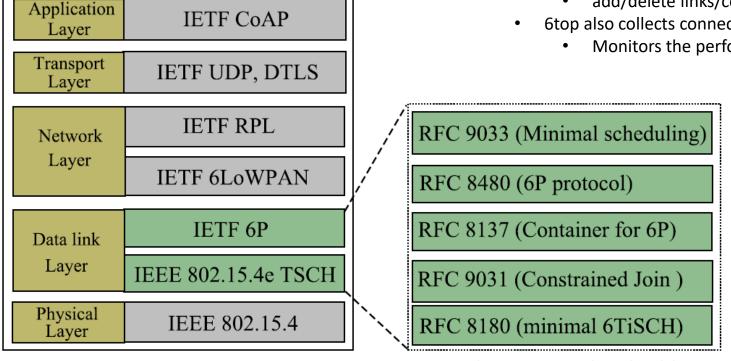
RFC 9030: An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)

Need for 6TiSCH Operation Sub-Layer

- In 6TiSCH, the TSCH MAC mode is placed under an IPv6-enabled protocol stack:
 - Constrained Application Protocol (CoAP)
 - IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)
 - IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN)

- TSCH does not define
 - Policies to build and maintain the data communication schedule
 - Mechanisms to adapt the resources allocated between neighbor nodes as per the data traffic flow features – change in data rates, neighbor change, etc.
 - Techniques to allow differentiated treatment of packets data and control packets
 - Mechanisms to match the schedule to the multi-hop paths maintained by RPL

6Top Sub-Layer



add/delete links/cells

A new sublayer, called 6Top

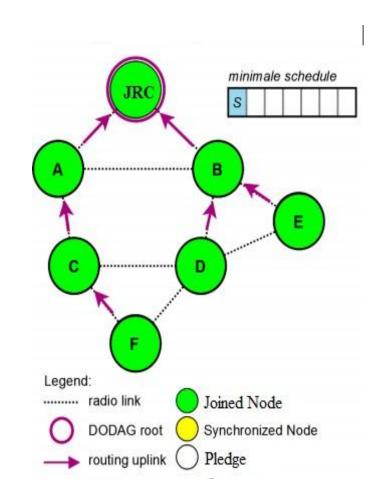
- 6top also collects connectivity information
 - Monitors the performance of cells

6TiSCH Protocol Stack

6TiSCH Operational sublayer

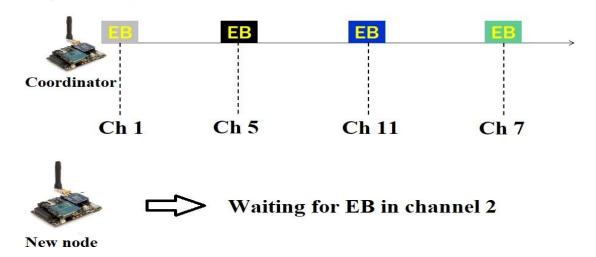
Source: Kalita and Khatua, "6TiSCH – IPv6 Enabled Open Stack IoT Network Formation: A Review" ACM Transactions on Internet of Things, 3(3), 2022, pp. 24:1–24:36.

6TiSCH Protocol Stack


Application (CoAP)	RFC8613 RFC7252	(2019) object security extension to CoAP (2014) base CoAP specification
Routing (RPL)	RFC6554 RFC6553 RFC6552 RFC6550	(2012) header format for routing header (2012) header format for RPL option (2012) Objective Function, RPL algorithm (2012) base RPL specification
Adaptation (6LoWPAN)	RFC8505 RFC8138 RFC8025 RFC6282 RFC4944	 (2018) neighbor discovery and registration (2017) routing header compression (2016) mechanism for extending 6LoWPAN (2011) updated base 6LoWPAN specification (2007) base 6LoWPAN specification
Scheduling (6TiSCH)	draft-ietf-6tisch-msf (RFC 9033) RFC8480 RFC8137 draft-ietf-6tisch-minimal-security (RFC 9031)	(WIP) distributed scheduling algorithm (2018) 6P, distributed scheduling protocol (2017) container for 6P (WIP) security framework for 6TiSCH (2017) minimal 6TiSCH
Physical layer	IEEE802,15,4	(2015) 2.4 GHz, 50-200 m range, 250 kbps, 127 byte frames

Source: Xavier Vilajosana et al., "IETF 6TiSCH: A Tutorial" *IEEE Communications Surveys & Tutorials*, 22(1), 2020, pp. 595–615.

6TiSCH Network Formation Process


- ➤ Join Registrar/Coordinator (JRC) starts the formation process
 - ➤ Enhanced Beacon (EB)
 - Routing Information (DIO)
- ➤ Pledge (new node) scans for EB on a random channel (RDC 100%)
- ➤ After receiving an EB, pledge synchronized with the underlying TSCH network (RDC ~1%)
- Synchronized node waits for DIO, after exchanging JRQ & JRS
- ➤ After receiving DIO, pledge becomes joined node; can transmit own packets
- ➤ Network formation completes when all the pledge join the network

Why Network formation is an issue?

- Channel hopping feature of TSCH
 - A pledge does not know in which channel transmission of control packets is happening

- Limited resource allocated for control packets
 - Only one shared cell in a slotframe

TSCH v/s 6TiSCH network formation

TSCH formation/synchronization time

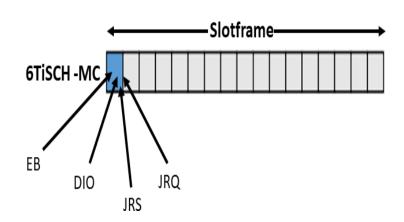
- A pledge gets synchronized with a TSCH network after receiving a valid EB frame
- The time when a pledge receives its first EB frame is considered as TSCH synchronization time or TSCH formation time

• 6TiSCH formation time

- When a TSCH synchronized node receives a valid DIO packet, it becomes a 6TiSCH joined node
- The DIO receiving time is considered as 6TiSCH joining time

Goals during Network formation

- Reduce pledge joining time
 - To immediately transmit data
- Save energy consumption
 - Radio duty cycle is 100% before TSCH synchronization
 - Maximum energy consumption


6TiSCH minimal configuration (RFC 8180)

- ➤ In 2017, 6TiSCH Working Group released the 6TiSCH minimal configuration standard in order to provide details about the minimal resource usage during network bootstrapping
 - ➤ Only one shared cell per slotframe can be used for transmission of control packets by all the nodes
 - ➤ Both EB and DIO packets are required to complete joining process
 - EB has the highest priority over other control frames like DIO, DIS, etc.
 - ➤ Control packets (JRQ and JRS) for secure enrolment of a node are also exchanged in shared cell

Shortcomings

- Static Allocation
- Joining time is more

MSF: Minimal Scheduling Function

- MSF: 6TiSCH Minimal Scheduling Function
 - RFC 9033, Year: 2021

- Objective of MSF:
 - To manage the communication schedule in 6TiSCH network in a distributed manner.
 - To describe the behavior of a node when it joins the network

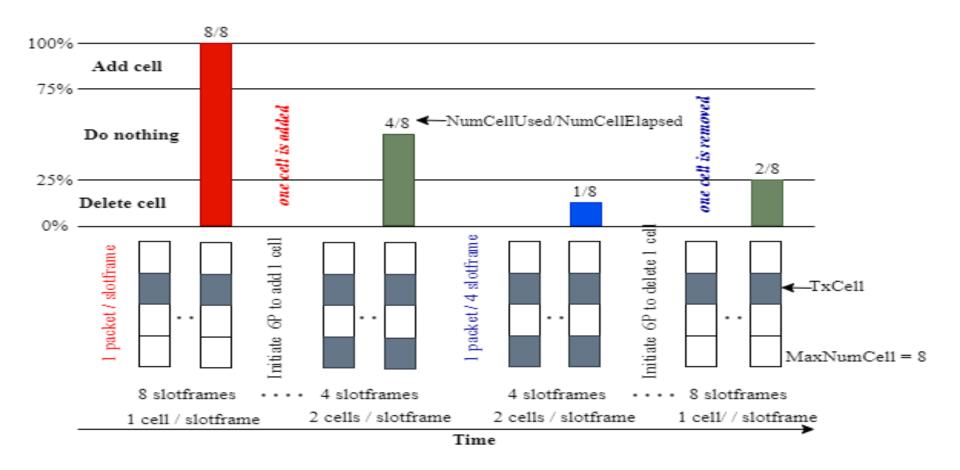
- 6TiSCH carry dynamic scheduling on top of minimal profile
 - Scheduling functions
 - ✓ Decision-making entity
 - ✓ Add/delete/relocate
 - 6top protocol (6P)
 - Managing entity
 - ✓ responsible for pairwise negotiation
 - ✓ 2-step or 3-step transaction
- Joined node relies on MSF & 6top
- 3 slotframes used
 - Slotframe 0 (Minimal cell)
 - Slotframe 1 (Autonomous cells)
 - Slotframe 2 (6P Negotiated cells)

□ https://datatracker.ietf.org/doc/rfc9033/

- A node implementing MSF should implement 6TiSCH minimal configuration.
 - Minimal cell is for broadcast frames(EB,DIO)
 - ✓ A single shared cell- provides minimal connectivity

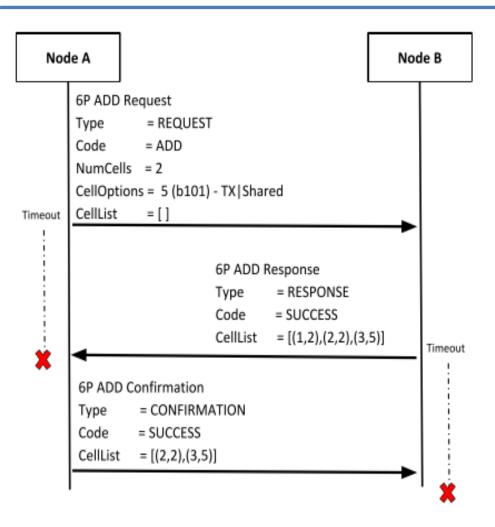
- Negotiated cells
 - ✓ managed by 6P to meet traffic requirements

- Autonomous cells
- Maintained autonomously by node without 6P negotiation
- AutoTxCell (cell options Tx=1,Rx=0,shared=1)(added/deleted on demand)
 - ✓ When there is a frame to send and there is no negotiated Tx cell and uninstall after sending out the frame
- AutoRxCell (cell options Tx=0,Rx=1,shared=0)(permanent)
 - ✓ Always remain scheduled after synchronization
- SlotOffset = 1+ hash (EUI64, Slotframe1 –1)
- ChannelOffset = hash (EUI64, NumberOfChannels)


- For Tx cell, EUI64
 of destination node
- For Rx cell, hash of EUI64 of node itself

- □ Rules for adding/deleting cells (Negotiated cells)
 - Adapting to traffic
 - For a node, monitors current usage of the cells it has with one of its neighbors

- Initially 1 negotiated cell
- Maintains two separate pairs of NumCellsElapsed and NumCellsUsed For a node, monitors current usage of the cells it has with one of its neighbors
 - ✓ CellUsage= NumCellsUsed / NumCellsElap sed
- Both initialized to zero when node boots
- when NumCellsElapsed reaches MaxNumCell
 - √ If CellUsage > LIM_NUMCELLSUSED_HIGH
 - Triggers 6P to add a single cell
 - √ If CellUsage < LIM_NUMCELLSUSED_LOW
 </p>
 - Triggers 6P to remove a single cell
 - ✓ Reset to zero


Here, MAX_NUMCELL is 8. It adds a cell when cell usage is more than 75% and deletes a cell if cellusage is less than 25%.


```
Node A
                                          Node B
              6P ADD Request
               Type = REQUEST
               Code = ADD
               SeqNum = 123
cells
              NumCells = 2
              CellList = [(1,2),(2,2),(3,5)]
locked
                                      L2 ACK
   6P Timeout
              6P Response
               Type = RESPONSE
               Code = RC_SUCCESS
                                              cells
               SeqNum = 123
               CellList = [(2,2),(3,5)]
                                               locked
             L2 ACK
```

An example of 2 step 6P transaction

An example of 3 step 6P transaction

Rules for Cell list

- ✓ To have at least NumCells in Cell ist
- ✓ Each cell must have different slot offset value
- ✓ Must not have any scheduled cell on the same slot offset
- ✓ Can't be with slotoffset 0
- ✓ Should be randomly chosen among all slotoffset values
- ✓ Channel offset is chosen randomly from [0...NoOfFrequencies]
 - **□** IETF 6TiSCH:A Tutorial
 - https://tools.ietf.org/html /draft-ietf-6tisch-6topprotocol

- Handling Schedule Collisions
- if a node has several cells to the selected parent, all should exhibit the same PDR.
- A cell having PDR significantly lower than the others collisions on that cell.
- PDR = NumTXAck / NumTx

- Rules for relocation of cell (Negotiated cells)
 Every Housekeeping period the node execute
 - For each negotiated Tx cell with that parent compute its PDR
 - Identifies cell with highest PDR
 - For other cell, find the difference with highest PDR.
 - If difference in PDR> Relocate_PDRTHRESH then it triggers relocation command

Switching parent

- ✓ Counts the number of negotiated Tx cell it has with the old parent per slot frame.
- ✓ Triggers one or more 6p ADD request with same cell options to the new parent.
- ✓ Then issues 6p CLEAR command to its old parent.

Thanks!

Figures and slide materials are taken from the following sources:

1. David Hanes *et al.*, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, 2018, Pearson India.